Обработка сигналов в условиях воздействия импульсных помех. Воздействие импульсной помехи

В воде

35,6 г/100 мл (0 °C)
35,9 г/100 мл (+25 °C)
39,1 г/100 мл (+100 °C) Растворимость в метаноле 1,49 г/100 мл Растворимость в аммиаке 21,5 г/100 мл Оптические свойства Показатель преломления 1,544202 (589 нм) Структура Координационная геометрия Октаэдральная (Na +)
Октаэдральная (Cl -) Кристаллическая структура гранецентрированная кубическая, cF8 Классификация Рег. номер CAS 7647-14-5 PubChem Рег. номер EINECS 231-598-3 SMILES InChI RTECS VZ4725000 ChEBI ChemSpider Безопасность ЛД 50 3000–8000 мг/кг NFPA 704 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Кристалл хлорида натрия

Хлори́д на́трия или хлористый натрий (NaCl) - натриевая соль соляной кислоты . Известен в быту под названием поваренной соли , основным компонентом которой и является. Хлорид натрия в значительном количестве содержится в морской воде , придавая ей солёный вкус [ ] . Встречается в природе в виде минерала галита (каменной соли). Чистый хлорид натрия представляет собой бесцветные кристаллы, но с различными примесями его цвет может принимать голубой, фиолетовый, розовый, жёлтый или серый оттенок.

Нахождение в природе и производство

В природе хлорид натрия встречается в виде минерала галита , который образует залежи каменной соли среди осадочных горных пород, прослойки и линзы на берегах солёных озёр и лиманов , соляные корки в солончаках и на стенках кратеров вулканов и в сольфатарах. Огромное количество хлорида натрия растворено в морской воде. Мировой океан содержит 4 × 10 15 тонн NaCl, то есть из каждой тонны морской воды можно получить в среднем 1,3 кг хлорида натрия. Следы NaCl постоянно содержатся в атмосфере в результате испарения брызг морской воды. В облаках на высоте полтора километра 30 % капель, больших 10 мкм по размеру, содержат NaCl. Также он найден в кристаллах снега.

Наиболее вероятно, что первое знакомство человека с солью произошло в лагунах тёплых морей или на соляных озёрах, где на мелководье солёная вода интенсивно испарялась под действием высокой температуры и ветра, а в осадке накапливалась соль. По образному выражению Пифагора , «соль была рождена благородными родителями: солнцем и морем» .

Галит

В природе хлорид натрия чаще всего встречается в виде минерала галита. Он имеет гранецентрированную кубическую решётку и содержит 39,34 % , 60,66 % . Другими химическими элементами, входящими в состав примесей, являются: , , , , , , , , , , , , , , , . Плотность 2,1-2, 2 г/см³, а твёрдость по шкале Мооса - 2. Бесцветный прозрачный минерал со стеклянным блеском. Распространённый минерал соленосных толщ. Образуется при осаждении в замкнутых водоёмах, а также как продукт сгона на стенках кратеров вулканов. Составляет пласты в осадочных породах лагунных и морских фаций, штокоподобные тела в соляных куполах и тому подобных.

Каменная соль

Каменной солью называют осадочную горную породу из группы эвапоритов, состоящую более чем на 90 % из галита. Галит также часто называют каменной солью. Эта осадочная горная порода может быть бесцветной или снежно-белой, но чаще она окрашена примесями глин, талька (серый цвет), оксидами и гидроксидами железа (жёлтый, оранжевый, розовый, красный), битумами (бурая). Каменная соль содержит хлориды и сульфаты натрия, калия, магния и кальция, бромиды, иодиды, бораты, гипс, примеси карбонатно-глинистого материала, доломита, анкериту, магнезита, битумов и так далее .

По условиям формирования месторождений каменную соль подразделяют на следующие виды :

  • рассолы современных соляных бассейнов
  • соляные подземные воды
  • залежи минеральных солей современных соляных бассейнов
  • ископаемые залежи (важнейшие для промышленности).

Морская соль

Морская соль является смесью солей (хлориды , карбонаты , сульфаты и т. д.), образующейся при полном испарении морской воды. Среднее содержание солей в морской воде составляет:

Очищенная кристаллическая морская соль

При испарении морской воды при температуре от +20 до +35 °C в осадке сначала кристаллизуются наименее растворимые соли - карбонаты кальция и магния и сульфат кальция. Затем выпадают более растворимые сульфаты натрия и магния, хлориды натрия, калия и магния, и после них - сульфаты калия и магния. Последовательность кристаллизации солей и состав осадка может несколько варьироваться в зависимости от температуры, скорости испарения и других условий. В промышленности морскую соль получают из морской воды, в основном методом обычного выпаривания. Она отличается от каменной соли значительно большим содержанием других химических солей, минералов и различных микроэлементов, в первую очередь йода, калия, магния и марганца. Соответственно, она отличается от хлорида натрия и по вкусу - горько-солёный привкус ей придают соли магния. Она используется в медицине: при лечении кожных заболеваний, таких как псориаз . Как лечебное вещество в аптечной и обычной торговой сети, распространённым продуктом является соль из Мёртвого моря . В очищенном виде этот вид соли также предлагается в продуктовой торговой сети - как натуральная и богатая йодом пищевая .

Залежи

Залежи каменной соли найдены во всех геологических системах. Важнейшие из них сосредоточены в кембрийских , девонских , пермских и третичных отложениях. Каменная соль составляет мощные пластовые залежи и ядра сводчатых структур (соляных куполов и штоков), образует прослойки, линзы, гнезда и вкрапления в других породах . Среди озёрных месторождений России крупнейшие - Эльтонское , Баскунчак в Прикаспии, Кучукское озеро , Кулундинское озеро , Эбейты и другие озёра в Западной Сибири.

Производство

В древности технология добычи соли заключалась в том, что соляную рапу (раствор) вытаскивали лошадиным приводом из шахт, которые назывались «колодцами» или «окнами», и были достаточно глубокими - 60-90 м. Извлечённый солевой раствор выливали в особый резервуар - творило , откуда она через отверстия стекала в нижний резервуар, и системой жёлобов подавалась в деревянные башни. Там её разливали в большие чаны, на которых соль вываривали.

На Руси поморы вываривали соль на побережье Белого моря и называли её морянка . В 1137 году новгородский князь Святослав определил налог на соляные варницы :

Беломорской солью, называемой «морянкой», торговали по всей Российской империи до начала XX века, пока её не вытеснила более дешёвая поволжская соль.

Современная добыча хлорида натрия механизирована и автоматизирована. Соль массово добывается выпариванием морской воды (тогда её называют морской солью) или рассола с других ресурсов, таких как соляные источники и соляные озера, а также разработкой соляных шахт и добычей каменной соли.
Для добычи хлорида натрия из морской воды необходимы условия жаркого климата с низкой влажностью воздуха, наличие значительных низменных территорий, лежащих ниже уровня моря, или затопляемых приливом, слабая водопроницаемость почвы испарительных бассейнов, малое количество осадков в течение сезона активного испарения, отсутствие влияния пресных речных вод и наличие развитой транспортной инфраструктуры.

Мировое производство соли в 2009 году оценивается в 260 миллионов тонн. Крупнейшими мировыми производителями являются Китай (60,0 млн тонн), США (46,0 млн тонн), Германия (16,5 млн тонн), Индия (15,8 млн тонн) и Канада (14 млн тонн) .

Применение

В пищевой промышленности и кулинарии

Соль поваренная

В пищевой промышленности и кулинарии используют хлорид натрия, чистота которого должна быть не менее 97 %. Его применяют как вкусовую добавку и для консервирования пищевых продуктов. Такой хлорид натрия имеет товарное название поваренная соль , порой также употребляются названия пищевая, столовая, а также уточнение названия в зависимости от её происхождения - каменная, морская, и по составу добавок - йодированная, фторированная и т. д. Такая соль является кристаллическим сыпучим продуктом с солёным вкусом без привкуса, без запаха (за исключением йодированной соли), в котором не допускаются посторонние примеси, не связанные с методом добывания соли. Кроме хлорида натрия, поваренная соль содержит небольшое количество солей кальция, магния, калия, которые придают ей гигроскопичности и жёсткости. Чем меньше этих примесей в соли, тем выше её качество.

Выделяют сорта: экстра, высший, первый и второй. Массовая доля хлористого натрия в сортах, %:

  • экстра - не менее 99,5;
  • высший - 98,2;
  • первый - 97,5;
  • второй - 97,0.

Массовая доля влаги в выварочной соли сорта «экстра» 0,1 %, в высшем сорте - 0,7 %. Допускают добавки йодида калия (йодистого калия), йодата калия, фторидов калия и натрия. Массовая доля йода должна составлять (40,0 ± 15,0) × 10 −4 %, фтора (25,0 ± 5,0) × 10 −3 %. Цвет экстра и высшего сортов - белый, однако для первого и второго допускается серый, желтоватый, розовый и голубоватый оттенки в зависимости от происхождения соли. Пищевую поваренную соль производят молотой и сеяной. По размеру зёрен молотую соль подразделяют на номера: 0, 1, 2, 3. Чем больше номер, тем больше зерна соли.

В кулинарии хлорид натрия потребляют как важнейшую приправу. Соль имеет характерный вкус, без которого пища кажется человеку пресной. Такая особенность соли обусловлена физиологией человека. Однако зачастую люди потребляют соли больше, чем нужно для физиологических процессов.

В коммунальном хозяйстве. Техническая соль

Зимой хлорид натрия, смешанный с другими солями, песком или глиной - так называемая техническая соль - применяется как антифриз против гололёда. Ею посыпают тротуары, хотя это отрицательно влияет на кожаную обувь и техническое состояние автотранспорта ввиду коррозийных процессов.

Регенерация Nа-катионитовых фильтров

Nа-катионитовые фильтры широко применяются в установках умягчения воды всех мощностей при водоподготовке. Катионитным материалом на современных водоподготовительных установках служат в основном глауконит , полимерные ионообменные смолы и сульфированные угли. Наиболее распространены сульфокатионитные ионообменные смолы.

Регенерацию Nа-катионитовых фильтров осуществляют 6-10%-м раствором поваренной соли, в результате катионит переводится в Na-форму, регенерируется. Реакции идут по уравнениям:

C a R 2 + 2 N a C l → 2 N a R + C a C l 2 {\displaystyle {\mathsf {CaR_{2}+2NaCl\rightarrow 2NaR+CaCl_{2}}}} M g R 2 + 2 N a C l → 2 N a R + M g C l 2 {\displaystyle {\mathsf {MgR_{2}+2NaCl\rightarrow 2NaR+MgCl_{2}}}}

Химическая промышленность

Соль, наряду с каменным углем, известняками и серой, образует «большую четвёрку» продуктов минерального сырья, которые являются важнейшими для химической промышленности . Из неё получают соду, хлор, соляную кислоту, гидроксид натрия, сульфат натрия и металлический натрий. Кроме этого соль используется также для промышленного получения легкорастворимого в воде хлората натрия, который является средством для уничтожения сорняков . Суммарное уравнение реакции электролиза горячего раствора хлорида натрия :

N a C l + 3 H 2 O → N a C l O 3 + 3 H 2 {\displaystyle {\mathsf {NaCl+3H_{2}O\rightarrow NaClO_{3}+3H_{2}}}}

Получение хлора и гидроксида натрия

  • на катоде как побочный продукт выделяется водород вследствие восстановления ионов H + , образованных в результате электролитической диссоциации воды:
H 2 O ⇄ H + + O H − {\displaystyle {\mathsf {H_{2}O\rightleftarrows H^{+}+OH^{-}}}} 2 H + + 2 e − → H 2 {\displaystyle {\mathsf {2H^{+}+2e^{-}\rightarrow H_{2}}}}
  • поскольку (вследствие практически полной электролитической диссоциации NaCl), хлор в растворе находится в виде хлорид-ионов, они окисляются на аноде до свободного хлора в виде газа:
N a C l → N a + + C l − {\displaystyle {\mathsf {NaCl\rightarrow Na^{+}+Cl^{-}}}}
  • суммарная реакция:
2 N a C l + 2 H 2 O → 2 N a O H + C l 2 + H 2 {\displaystyle {\mathsf {2NaCl+2H_{2}O\rightarrow 2NaOH+Cl_{2}+H_{2}}}}

Как видно из уравнения суммарной реакции, ещё одним продуктом является гидроксид натрия. Расход электроэнергии на 1 т хлора составляет примерно 2700 кВт × час. Полученный хлор при повышенном давлении сжижается в жёлтую жидкость уже при обычной температуре .

Если между анодом и катодом нет диафрагмы, то растворённый в воде хлор начинает реагировать с гидроксидом натрия, образуя хлорид и гипохлорит натрия NaClO :

2 N a O H + C l 2 → N a C l + N a O C l + H 2 O {\displaystyle {\mathsf {2NaOH+Cl_{2}\rightarrow NaCl+NaOCl+H_{2}O}}} N a + + e − → N a (H g) {\displaystyle {\mathsf {Na^{+}+e^{-}\rightarrow Na_{(Hg)}}}}

Амальгаму позже разлагают горячей водой с образованием гидроксида натрия и водорода, а ртуть перекачивают насосом обратно в электролизер:

2 N a (H g) + 2 H 2 O → 2 N a O H + H 2 {\displaystyle {\mathsf {2Na_{(Hg)}+2H_{2}O\rightarrow 2NaOH+H_{2}}}}

Суммарная реакция процесса такая же, как и в случае диафрагменного метода.

Получение металлического натрия

Металлический натрий получают электролизом расплава хлорида натрия. Происходят следующие процессы:

  • на катоде выделяется натрий:
N a + + e − → N a {\displaystyle {\mathsf {Na^{+}+e^{-}\rightarrow Na}}}
  • на аноде выделяется хлор (как побочный продукт):
2 C l − → C l 2 + 2 e − {\displaystyle {\mathsf {2Cl^{-}\rightarrow Cl_{2}+2e^{-}}}}
  • суммарная реакция:
2 N a + + 2 C l − → 2 N a + C l 2 {\displaystyle {\mathsf {2Na^{+}+2Cl^{-}\rightarrow 2Na+Cl_{2}}}}

Ванна электролизера состоит из стального кожуха с футеровкой , графитового анода и кольцевого железного катода. Между катодом и анодом располагается сетчатая диафрагма. Для снижения температуры плавления NaCl (+800 °C), электролитом является не чистый хлорид натрия, а его смесь с хлоридом кальция CaCl 2 (40:60) с температурой плавления +580 °C. Металлический натрий, который собирается в верхней части катодного пространства, содержит до 5 % примесь кальция, но последний со временем почти полностью отделяется, поскольку его растворимость в жидком натрии при температуре его плавления (+371 K = 98 °C) составляет всего 0,01 %. С расходованием NaCl его постоянно добавляют в ванну. Затраты электроэнергии составляют примерно 15 кВт × ч на 1 кг натрия .

Получение соляной кислоты и сульфата натрия

Среди многих промышленных методов получения соляной кислоты, то есть водного раствора хлороводорода (HCl), применяется реакция обмена между хлоридом натрия и серной кислотой:

N a C l + H 2 S O 4 → N a H S O 4 + H C l {\displaystyle {\mathsf {NaCl+H_{2}SO_{4}\rightarrow NaHSO_{4}+HCl\uparrow }}} N a C l + N a H S O 4 → N a 2 S O 4 + H C l {\displaystyle {\mathsf {NaCl+NaHSO_{4}\rightarrow Na_{2}SO_{4}+HCl\uparrow }}}

Первая реакция происходит в значительной степени уже при обычных условиях, а при слабом нагреве идёт почти до конца. Вторая происходит лишь при высоких температурах. Процесс осуществляется в специальных механизированных печах большой мощности. Хлороводород , который выделяется, обеспыливают, охлаждают и поглощают водой с образованием соляной кислоты. Как побочный продукт образуется сульфат натрия Na 2 SO 4 .

Этот метод применяется также для получения хлороводорода в лабораторных условиях.

Физические и физико-химические свойства

Температура плавления +800,8 °С, кипения +1465 °С.

Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в граммах на 100 г воды) равен 35,9 при +21 °C и 38,1 при +80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей - хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена. В чистом виде хлорид натрия не гигроскопичен. Однако соль часто бывает загрязнена примесями (преимущественно ионами Ca 2+ , Mg 2+ и SO2−
4 ), и такая соль на воздухе сыреет . Кристаллогидрат NaCl · 2H 2 O можно выделить при температуре ниже +0,15 °C .

Смесь измельчённого льда с мелким порошком хлорида натрия является эффективным охладителем. Так, смесь состава 30 г NaCl на 100 г льда охлаждается до температуры −20 °C. Это происходит потому, что водный раствор соли замерзает при температуре ниже 0 °C. Лёд, имеющий температуру около 0 °C, плавится в таком растворе, поглощая тепло окружающей среды.

Диэлектрическая проницаемость NaCl - 6,3

Плотность и концентрация водных растворов NaCl

Концентрация, % Концентрация, г/л Плотность, г/мл
1 10,05 1,005
2 20,25 1,012
4 41,07 1,027
6 62,47 1,041
8 84,47 1,056
10 107,1 1,071
12 130,2 1,086
14 154,1 1,101
16 178,5 1,116
18 203,7 1,132
20 229,5 1,148
22 256 1,164
24 283,2 1,18
26 311,2 1,197

Лабораторное получение и химические свойства

При действии серной кислоты выделяет хлороводород.

2 N a C l + H 2 S O 4 → N a 2 S O 4 + 2 H C l {\displaystyle {\mathsf {2NaCl+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+2HCl}}}

С раствором нитрата серебра образует белый осадок хлорида серебра (качественная реакция на хлорид-ион).

N a C l + A g N O 3 → N a N O 3 + A g C l {\displaystyle {\mathsf {NaCl+AgNO_{3}\rightarrow NaNO_{3}+AgCl}}}

В кристаллической решётке между атомами преобладает ионная химическая связь , что является следствием действия электростатического взаимодействия противоположных по заряду ионов.

См. также

  • Поваренная соль - специя и пищевая добавка
  • Галит - минерал

Примечания

  1. Натрия хлорид на сайте англ. National Institute of Standards and Technology ) (англ.)
  2. Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М. : Химия , 1973. - 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 218
  3. Пифагор. Золотой канон. Фигуры эзотерики. - М. : Изд-во Эксмо, 2003. - 448 с. (Антология мудрости).
  4. Малая горная энциклопедия . В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  5. УНИАН: Морская соль для красоты и здоровья кожи
  6. Российское законодательство Х-XX веков. Законодательство Древней Руси. Т. 1. М. , 1984. С. 224-225.
  7. В переводе с поморской «говори» слово чрен (црен) означает четырёхугольный ящик, кованный из листового железа, а салга - котёл, в котором варили соль. Пузом в беломорских солеварнях называли мешок соли в два четверика, то есть, объёмом около 52 литров.
  8. Соль (PDF) , Геологический обзор США на сайте Программы минеральных ресурсов (англ.)

Как объясняет свойства кристаллов молекулярная теория? В начале XIX века впервые было высказано предположение, что внешне правильная форма кристаллов обусловлена внутренне правильным расположением частиц, из которых состоят кристаллы, т. е. атомов. На основании исследований посредством рентгеновских лучей было выяснено, что это предположение справедливо.

Частицы, составляющие кристаллы, расположены друг относительно друга в определенном порядке, на определенных расстояниях друг от друга. Конечно, вследствие теплового движения расстояния между частицами все время немного меняются, но можно говорить о некотором среднем для каждой температуры расстоянии. Совокупность узлов, т. е. точек, соответствующих средним положениям частиц, составляющих кристалл, называют пространственной решеткой этого кристалла.

Частицами, из которых состоят кристаллы, в некоторых случаях являются электрически заряженные частицы - ионы. Ионами называют атомы (или группы атомов), потерявшие или, наоборот, присоединившие к себе один, два или больше электронов. Если атом потерял электроны, он является положительно заряженной частицей - положительным ионом. Если же к атому присоединились электроны, то он является отрицательным ионом. Кристаллы, состоящие из ионов, называют ионными кристаллами.

Простой пример пространственной решетки ионного кристалла представляет собой решетка кристалла хлористого натрия (поваренной соли). Молекулу этого вещества мы представляем себе состоящей из одного атома хлора и одного атома натрия . Такими являются эти молекулы в парах соли. Экспериментальное исследование показало, что в твердом кристалле нет молекул в том смысле, как это упоминалось выше. Кристаллическая решетка хлористого натрия состоит не из молекул хлористого натрия, а из чередующихся ионов хлора и натрия (рис. 444). Каждый ион натрия окружен шестью ионами хлора, расположенными по трем взаимно перпендикулярным направлениям, а каждый ион хлора в свою очередь окружен шестью ионами натрия.

Рис. 444. Схема расположения узлов в пространственной решетке кристалла хлористого натрия

Подобные решетки имеют многие соли, состоящие из двух атомов (бромистое и хлористое серебро, йодистый калий, многие сернистые металлы и т. д.). Расстояния между средними положениями ионов в решетках разных веществ неодинаковы. У хлористого натрия расстояние между соседними ионами равно , у хлористого серебра , у йодистого калия и т.д.). Существуют и более сложные ионные кристаллы. Так, например, решетка исландского шпата состоит из ионов и ионов .

Кроме ионных кристаллов, существуют также кристаллы, состоящие из незаряженных частиц - атомов или молекул. Например, решетка алмаза состоит из атомов углерода, решетка кристаллов льда - из молекул воды , решетка нафталина - из больших молекулярных групп и т. д. Расстояния между атомами таких кристаллов также порядка .

Далеко не всегда атомы или ионы расположены в решетке, представляющей совокупность кубов (кубические решетки), как это имеет место у и др. Большинство решеток имеет гораздо более сложный вид. Примером является решетка льда (рис. 445). Как же объяснить зависимость физических свойств кристаллов от направления?

Рис. 445. Пространственная решетка кристаллов льда: а) вид сверху; б) вид сбоку. Шарики изображают атомы кислорода; положения атомов водорода не показаны

Пусть на рис. 446, а кружки изображают атомы жидкости (например, ртути), расположенные в некоторой плоскости. Выберем некоторый атом и проведем через него прямые линии по разным направлениям. Ясно, что благодаря полной хаотичности расположения атомов на одинаковых отрезках любой из этих прямых будет находиться практически одно и то же число атомов. Это значит, что при хаотическом расположении атомов все направления равноправны.

Рис. 446. а) Беспорядочное расположение частиц в жидкости. Любая прямая , проведенная через молекулу , встречает одинаковое число частиц (они отмечены черными кружками), б) Упорядоченное расположение атомов в кристалле. Различные прямые , проведенные через молекулу , встречают различное число атомов

Не то будет, если мы произведем такое же построение при правильном расположении атомов, характерном для кристалла, например таком, какое изображено на рис. 446, б. Видно, что прямые, проведенные по направлениям или , встретят много атомов, по направлению - несколько меньше, а по направлению - совсем мало. Это и объясняет, почему физические свойства кристалла зависят от направления. Так, например, в решетке поваренной соли раскалывание происходит легче всего по плоскостям, параллельным или (рис. 447). Поэтому, ударив молотком по кубику кристалла поваренной соли, мы разобьем его снова на правильные кубики, в то время как удар по куску аморфного стекла разбивает его на осколки самой разнообразной формы.

Рис. 447. В кристалле поваренной соли раскалывание происходит легче по плоскостям, параллельным или , чем по любым другим плоскостям, например

В заключение отметим, что в реальных кристаллах решетка обычно не является правильной во всем объеме кристалла. Кое-где решетка искажена, имеются участки, где атомы расположены в беспорядке, кое-где присутствуют вкрапления посторонних атомов. Эти местные искажения играют немаловажную роль для объяснения некоторых свойств реальных кристаллов.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

— по происхождению (месту возникновения);

— по физическим свойствам;

— по характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F — полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

— атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

— индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

— помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

— космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам помех различают:

— Флуктуационные помехи;

— Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

— аддитивные помехи;

— мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ — ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами — основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

— подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

— уменьшение помех на путях проникновения в приемник;

— ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

Передача сигналов сопровождается шумами, которые искажают передаваемую информацию. Поэтому на протяжении всего развития техники связи центральной проблемой остается борьба с помехами и шумами (далее, обобщенно, - шумами). Если мощность полезного сигнала соизмерима со средней мощностью шума, трудно не только выделить, но и обнаружить сигнал. Одним из путей повышения помехоустойчивости является различение сигналов, соответствующих разным сообщениям. Затем нужно выбрать такой метод приема, который наилучшим образом реализует это различие. При этом важнейшей задачей является выделение информации с максимальной достоверностью - оптимальный (согласованный) прием. Для этого в состав приемника включают оптимальный фильтр, цепи после- детекторной обработки, следящие схемы АПЧ и ФАПЧ.

Оптимальный (согласованный) линейный фильтр

Уменьшение влияния шумов достигается различными способами, в том числе выбором наилучших характеристик цепей, через которые проходит смесь сигнала и шума. Основой большинства практических методов выделения сигнала из аддитивной смеси сигнала и шума в приемниках является оптимальная линейная фильтрация , использующая линейные частотные фильтры. Удобнее всего описывают оптимальные фильтры с помощью импульсной или частотной (коэффициент передачи) характеристики.

Критерии оптимального приема сигналов. В зависимости от назначения системы передачи информации и характера принимаемого сигнала на фоне действующих помех принимают различные критерии оптимального приема. В одних случаях критерием является обнаружение полезного сигнала, в других - разрешение сигналов, в третьем - измерение параметров этого сигнала.

Обнаружение - это сам факт приема полезного радиосигнала. Такой случай характерен для радиолокации.

Поп разрешением сигналов понимают, какое именно из нескольких возможных переданных сообщений поступило на вход радиоприемного устройства. Например, при передаче цифровых сообщений двоичным кодом необходимо определить, какой бит, 1 или 0, передан в данный момент по радиоканалу.

Измерение параметров сигналов позволяет извлечь необходимую информацию об объекте, с которого она поступила.

Качество принятого сообщения в зависимости от его характера оценивается по-разному. В цифровых системах передачи битовой информации это качество определяется вероятностью ошибки принятого символа. Например, если вероятность составляет 10 3 , то это означает, что из тысячи принятых бит один может быть ошибочным. При передаче речи качество принятого сообщения оценивается по его разборчивости, т.е. по числу правильно понятых слов, смысл которых не искажен. При передаче телевизионного сигнала вводится несколько критериев, по которым оценивается качество принятого изображения. Отмеченные разнородные критерии при передаче аналоговых сообщений являются функцией отношения мощности сигнала к мощности шума на выходе приемника.

При обнаружении сигнала в шумах наиболее эффективен критерий максимума отношения сигнал/шум по мощности на выходе фильтра. Линейный фильтр, для которого отношение максимально, называют оптимальным (подразумевая - наилучшим) или согласованным фильтром , а также коррелятором.

Отношение сигнал/шум. Используем в приемнике линейный фильтр с таким частотным коэффициентом передачи К(со), что значения его модуля |К(со)| велики в частотном диапазоне, где сконцентрирована основная доля мощности полезного сигнала, и малы в частотных областях, где существенна спектральная плотность мощности шума. Следует ожидать, что при подаче на вход оптимального фильтра аддитивной суммы полезного сигнала и шума на его выходе можно получить заметное увеличение отношения сигнал/шум. Оценим количественно данное положение. Пусть на входе линейного фильтра радиоприемника присутствует входное колебание, являющееся суммой полезного сигнала u(t) и шума r(t):

На практике и сигнал, и шум являются узкополосными с одинаковыми центральными частотами со 0 . Кроме того, они некоррелированны, т.е. среднее значение их произведения на некотором интервале Т равно

Также предположим стационарность шумов на протяженном интервале времени.

Интенсивность колебаний на входе линейного фильтра характеризуют значением среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (7.2) есть сумма средних квадратов полезного сигнала и шума:

где о 2 - дисперсия (мощность) входного шума.

Для описания относительного уровня полезного сигнала вводят так называемое отношение сигнал/шум на входе фильтра

Отметим, что безразмерное число Q nx характеризует уровень сигнала по отношению к уровню шума весьма приближенно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что колебания сигнала и реализации шума «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации шума представляют собой квазигармони- ческие колебания. Естественно, что в этом случае можно пользоваться формулой (7.3) для оценки уровня полезных сигналов с амплитудной или частотной модуляцией.

Пример 7.1

Пусть на входе линейного фильтра действуют однотональный АМ-сигиал м дм(0 = U n cosoy и гауссов шум г(?) с односторонним спектром мощности

Найдем отношение сигнал/шум на входе фильтра.

Решение

Средняя мощность АМ-сигпала согласно формуле (2.70)

Здесь первое слагаемое 0,5U 2 соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать

Дисперсия шума на входе фильтра

Отношение сигнал/шум U„M 2 /(F 0 Q) оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Одним из основных параметров фильтров приемника является коэффициент передачи. Определим коэффициент передачи оптимального фильтра приемника при условии, что сигнал принимается на фоне белого шума с двусторонней спектральной плотностью мощности W 0 (односторонней N n = 2W tt).

Представим коэффициент передачи оптимального фильтра в виде

где К{ со) - АЧХ; (р^(со) - ФЧХ фильтра.

Пусть входной сигнал u(t) имеет спектральную плотность

Здесь S(со) и ф с (со) - амплитудный и фазовый спектры принимаемого сигнала.

Отметим некоторый, пока неизвестный, момент времени t = ? 0 , при котором отношение сигнал/шум на выходе фильтра будет максимальным. В соответствии с формулой (4.5) сигнал на выходе фильтра (линейного четырехполюсника)

Поскольку *? вых (со) = 5 цх (со)/С(со), то с помощью соотношения (3.28) находим среднюю мощность (дисперсию) белого шума на выходе фильтра".

Используя формулы (7.5) и (7.6), найдем отношение мощностей сигнала и шума:

Введем эквивалентный коэффициент передачи линейного фильтра:

Оптимальный коэффициент передачи анализируемого фильтра максимизирует правую часть выражения (7.7).

Задачу нахождения оптимального коэффициента передачи К((о) решают на основе неравенства Буняковского - Коши - Шварца, имеющего вид

Прямая подстановка показывает, что неравенство обращается в равенство, если

где А - постоянный коэффициент; S* (со) - функция, комплексно-сопряженная с 5(со).

Представим эквивалентный коэффициент передачи (7.8) в виде произведения с фазовым множителем:

Отсюда находим коэффициент передачи фильтра

Формула (7.9) полностью определяет коэффициент передачи оптимального фильтра, максимизирующего отношение сигнал/шум. Отсюда же следуют требования к АЧХ и ФЧХ оптимального фильтра:

По определению частотный коэффициент передачи - безразмерная величина, поэтому постоянный коэффициент А должен иметь размерность , обратную размерности амплитудного спектра входного сигнала S(со).

Суть метода обработки принимаемого сигнала оптимальным фильтром приемника поясняет рис. 7.21, где показаны спектры входных сигнала 5(со), белого шума W 0 и выходного сигнала 5 ВЬ1Х (со), а также АЧХ фильтра К(со) и энергетический спектр выходного шума aj(co).


Рис. 7.21.

а - спектры входных сигнала и шума; б - спектр выходного сигнала и АЧХ фильтра;

в - спектр выходного шума

Соотношение (7.10) устанавливает, что АЧХ фильтра К(со) должна с точностью до масштабного множителя А совпадать по форме с амплитудным спектром S(со) входного сигнала. Благодаря этому подавляющая часть спектральных составляющих входного сигнала, имеющих наибольшие амплитуды, проходит на выход оптимального фильтра без ослабления и вносит основной вклад в образование пикового значения. Из множества спектральных компонентов входного белого шума, располагающихся в бесконечной полосе частот, на выход фильтра проходят и не ослабляются те, которые находятся иод кривой его АЧХ, т.е. в ограниченной полосе частот. Это приводит к ослаблению средней мощности шума а 2 х на выходе фильтра по сравнению со спектральной плотностью мощности белого шума W 0 на входе. В результате этого действия отношение сигнал/шум на выходе оптимального фильтра увеличивается.

Формула (7.11), описывающая ФЧХ оптимального фильтра, трактуется как условие компенсации начальных фаз гармонических составляющих спектра выходного сигнала. Согласно этому условию оптимальный фильтр должен иметь такую ФЧХ, чтобы получаемый в нем фазовый сдвиг каждой гармоники -ф с (со) был равен по значению и противоположен по знаку начальной фазе соответствующей составляющей спектральной плотности S(со) входного сигнала. Оптимальный фильтр проводит компенсацию начальных фаз всех спектральных составляющих входного сигнала u(t ), в результате чего и образуется пик выходного сигнала. Составляющая ФЧХ -со? 0 указывает на то, что пик выходного сигнала задержан относительно начала действия входного сигнала на интервал t 0 . Связь между фазовой характеристикой ф с (со) входного сигнала, компенсирующей ее фазовой характеристикой -ф с (со) и ФЧХ фильтра поясняется на рис. 7.22. Фазовая характеристика выходного сигнала, определяемая формулой

показана на рис. 7.22 прямой линией.

Рис. 7.22.

Итак, коэффициент передачи фильтра, описываемый формулой (7.4), согласован с амплитудным и фазовым спектрами входного сигнала. Поэтому рассмотренный оптимальный линейный фильтр часто называют согласованным.

Вернемся к формуле (7.7) и рассмотрим энергетические соотношения между принимаемым сигналом и шумом на выходе исследуемого оптимального фильтра. Так как квадрат модуля комплексного числа равен квадрату его действительной части, то после несложных преобразований получим выражение

Числитель в формуле (7.13) в соответствии с равенством Парсеваля представляет собой энергию входного сигнала Э. Тогда последнее соотношение примет вид

Согласно формуле (7.14) оптимальный фильтр максимизирует отношение сигнал/шум, которое зависит от энергии входного сигнала и спектральной плотности мощности белого шума и не связано с формой входного сигнала.

Пример 7.2

Сигнал, поступающий на вход оптимального фильтра, представляет собой прямоугольный видеоимпульс с некоторой амплитудой Е и длительностью т н = = 10 мкс. Белый шум на входе фильтра имеет спектральную плотность мощности W 0 = 25 10 18 В 2 /Гц. Определим минимальное значение амплитуды Е, при котором возможно обнаружение сигнала, если приемник регистрирует его присутствие при отношении сигнал/шум Q mls = 3/W n = 2 дБ.

Решение

Требуемое значение отношения сигнал/шум найдем из условия 101g(3/W 0) = 2, откуда 3/W 0 = 1,57. Поскольку энергия импульса 3 = Е 1 т и, то

Импульсная характеристика оптимального фильтра. Чтобы определить импульсную характеристику оптимального фильтра, вычислим обратное преобразование Фурье от частотного коэффициента передачи (7.9). Используя уже применяемую ранее формулу для определения импульсной характеристики через коэффициент передачи

Поскольку 5*(со) = -5(со), то, переходя к новой переменной (о 2 = -со, после несложных преобразований запишем

Следовательно, импульсная характеристика оптимального фильтра совпадает с зеркально отраженной относительно оси ординат копией входного сигнала, сдвинутой на интервал? 0 по оси времени. Об этом говорит отрицательный знак при аргументе t в формуле (7.16). На рис. 7.23 показан прин-


Рис. 7.23. u(t) длительностью т и. Поскольку при t t 0 между началом действия сигнала на входе фильтра и моментом образования максимального пика сигнала на его выходе должна быть не менее длительности сигнала т и. Это одно (но недостаточное) из условий физической реализуемости оптимального фильтра, показывающее, что для создания максимального пика сигнала на выходе надо провести обработку фильтром всего входного сигнала u(t).

Фундаментальной особенностью оптимального фильтра является то, что обнаружение с его помощью сигнала в шумах зависит не от формы, а от его энергии. В частности, путем увеличения длительности входного импульса можно надежно обнаруживать сигналы небольшой амплитуды. Однако при этом проигрывают в скоростях обработки информации. Как правило, формы полезного сигнала на входе и выходе согласованного фильтра существенно отличаются друг от друга. В частности, задачей согласованного фильтра для двоичной системы является не восстановление формы сигнала, искаженной шумом, а получение одного отсчета, по которому можно судить о присутствии или отсутствии на входе фильтра сигнала известной формы.

За согласованным фильтром в приемнике может находиться выравнивающий фильтр, или эквалайзер; он необходим только в цифровых системах связи, в которых сигнал может искажаться вследствие межсимвольной интерференции, внесенной каналом. Принимающий и выравнивающий фильтры являются отдельными устройствами, что подчеркивает различие их функций. Впрочем, в большинстве случаев при использовании эквалайзера для выполнения обеих функций (а следовательно, и для компенсации искажения, внесенного передатчиком и каналом) можно включать единый фильтр. Такой составной фильтр называют просто выравнивающим или принимающим и выравнивающим.

Согласованным фильтром может быть пассивный фильтр на линиях задержки, или коррелятор, или специальное цифровое устройство, преобразующее входную смесь сигнал/шум в частотную область, умножающее полученный спектр на спектр, комплексно-сопряженный со спектром входного сигнала, на который настроен оптимальный приемник, и возвращающий результат обратно во временную область. Но в любом случае это будет устройство, АЧХ которого повторяет амплитудный спектр сигнала, а ФЧХ есть зеркальное отражение фазовой характеристики сигнала. Согласованный с неким сигналом фильтр - это линейный четырехполюсник, импульсная характеристика которого является зеркальным отражением этого сигнала.

Отметим, что функцию оптимального фильтра для входного сигнала в приемнике может выполнять коррелятор, что имеет важное практическое значение, поскольку в ряде случаев реализовать коррелятор проще, чем оптимальный фильтр. В возможности выполнять коррелятором функцию оптимального фильтра можно убедиться, сравнив спектры сигналов на выходе оптимального фильтра и коррелятора.



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные