Расчет схемы выпрямителя с балластным конденсатором. Как рассчитать бестрансформаторный блок питания

СЕТЕВОЙ ИСТОЧНИК ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ

Во многих из описанных выше устройств использовались бестрансформаторные источники питания с гасящим конденсатором. Они удобны своей простотой, малыми габаритами и массой, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. О том, как правильно рассчитать такой источник, рассказывается в данном разделе.

В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Рассмотрим вначале работу источника с чисто резистивной нагрузкой (рис. 123,а).




В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последовательно с


диодным мостом, а нагрузка, зашунтированная другим конденсатором, питается от выходной диагонали моста (рис. 124). В этом случае цепь становится резко нелинейной и форма тока, протекающего через мост и гасящий конденсатор, будет отличаться от

синусоидальной. Из-за этого представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в источнике со сглаживающим конденсатором С2 емкостью, достаточной для того, чтобы считать пульсации выходного напряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся режиме представляет собой некий эквивалент симметричного стабилитрона. При напряжении на этом эквиваленте, меньшем некоторого значения (оно практически равно напряжению Uвых на конденсаторе С2), мост закрыт и ток через него не проходит, при большем - через открытый мост течет ток, не давая увеличиваться напряжению на входе моста.

Рассмотрение начнем с момента t1, когда напряжение сети максимально (рис. 125). Конденсатор С1 заряжен до амплитудного напряжения сети Uс.амп за вычетом напряжения на диодном мосте Uм, примерно равного Uвых. Ток через конденсатор С1 и закрытый мост равен нулю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меняется.


Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2). В этот момент появится скачком ток Ic1 через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не меняется, а ток определяется скоростью изменения напряжения сети и, следовательно, будет точно таким же, как если бы к сети был подключен только конденсатор С1 (график 3).

Когда напряжение сети достигнет отрицательного амплитудного значения (момент tз), ток через конденсатор С1 снова станет равным нулю. Далее процесс повторяется каждый полупериод.

Ток через мост протекает лишь в интервале времени t2-t3, его среднее значение может быть рассчитано как площадь заштрихованной части




При отсутствии стабилитрона на необходимое напряжение Uвых;

допускающего рассчитанный максимальный ток стабилизации, можно соединить несколько стабилитронов на меньшее напряжение последовательно.

Подставлять в формулу (4) минимальный ток нагрузки Iн nun следует лишь тогда, когда этот ток длителен - единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секунды) его надо заменить средним (по времени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использовать гасящий конденсатор несколько


источника по схеме рис. 124 зарядка этого конденсатора длится четверть периода напряжения сети, и столько же - разрядка. При таком приближении двойное напряжение пульсации 2Uп (размах) равно: 2ип=0,25Iн mах/fС.

2Uп=0,75Iнmax/fC.

Для выходного напряжения менее 100 В реально зарядка длится большее время, разрядка - меньшее, и эти выражения дают заметно завышенный результат, поэтому расчет емкости сглаживающего конденсатора по полученным из них формулам обеспечивает некоторый запас: С=5Iнmax/2Uп (для рис. 124); С= 15Iнmax/2Uп (для рис. 126), где ток - в миллиамперах, емкость - в микрофарадах, напряжение - в вольтах.

Хотя стабилитрон и уменьшает напряжение пульсации, использовать сглаживающий конденсатор емкостью, менее рассчитанной, не рекомендуется. В ранее рассмотренном примере при размахе пульсации 0,2 В емкость сглаживающего конденсатора равна:

С2=5*15/0,2=375 мкФ.

Для ограничения броска тока через диоды выпрямительного моста в момент включения источника в сеть последовательно с гасящим конденсатором необходимо включать токоограничивающий резистор. Чем меньше сопротивление этого резистора, тем меньше потери в нем. Для диодного моста КЦ407А или моста из диодов КД103А достаточно резистора сопротивлением 36 Ом.

Рассеиваемую на нем среднюю мощность Р можно определить по формуле: Р= 5,6С1^2R, где емкость - в микрофарадах, сопротивление -в омах, мощность - в милливаттах. Для рассмотренного выше примера P=5,6*0,39^236=30 мВт. Для надежности (ведь в момент включения к резистору может быть приложено амплитудное напряжение сети) рекомендуется использовать резистор мощностью не менее 0,5 Вт.

Для того, чтобы исключить возможность поражения электротоком при налаживании устройств с рассматриваемыми источниками, питать их следует не от сети, а от сетевого лабораторного низковольтного блока питания через токоограничительный резистор. Выходное напряжение лабораторного блока устанавливают больше напряжения питания налаживаемого устройства настолько, чтобы ток через токоограничительный резистор был близок к Iст min+ Iнmax.

Иногда удобно использовать в роли токоограничительного резистор источника, ограничивающий бросок тока через диоды выпрямительного моста. В этом случае достаточно замкнуть выводы






(рис. 130) на ток нагрузки до 0,3 А и источник бесперебойного питания для электронно-механических часов (рис. 131).

Делитель напряжения пятивольтового источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкф. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=O) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки - 27 В.

Электронно-механические часы обычно питают от одного гальва

нического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.

Транзистор VT1, включенный эмиттерным повторителем, и гальванический элемент G1 составляют стабилизатор напряжения. На выходе источника будет напряжение элемента минус падение напряжения на эмиттерном переходе транзистора.

Ток, потребляемый от элемента G1 при наличии сетевого напряжения, меньше тока нагрузки в h21э раз, что существенно продлевает срок службы элемента. Практически это означает, что элемент приходится заменять не из-за его разрядки током нагрузки, а вследствие других причин - саморазрядки, высыхания электролита и т. п.

В случае пропадания напряжения в сети транзистор выходит из режима эмиттерного повторителя и нагрузку питает гальванический.элемент G1 через открытый эмиттерный переход. После появления сетевого напряжения транзистор возвращается в режим эмиттерного повторителя и нагрузка переходит на питание от сети. Конденсатор С4 обеспечивает нормальную работу часов при глубокой разрядке элемента G1.

Диоды Д223 можно заменить на любые другие, транзистор МП41А - на любой германиевый структуры р-n-р. Элемент G1

лучше использовать алкалиновый, например, Duracell, Energizer. Реальный срок эксплуатации такого элемента в блоке питания может достигать 10 лет.

И последнее. Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

В самом начале темы, относительно подбора гасящего конденсатора, рассмотрим цепь, состоящую из резистора и конденсатора, последовательно подключенных к сети. Полное сопротивление такой цепи будет равно:

Эффективная величина тока, соответственно, находится по закону Ома, напряжение сети делить на полное сопротивление цепи:

В результате для тока нагрузки и входного и выходного напряжений получим следующее соотношение:

А если напряжение на выходе достаточно мало, то мы имеем право считать приблизительно равным:

Однако давайте рассмотрим с практической точки зрения вопрос подбора гасящего конденсатора для включения в сеть переменного тока нагрузки, рассчитанной на напряжение меньшее стандартного сетевого.

Допустим, у нас есть лампа накаливания мощностью 100 Вт, рассчитанная на напряжение 36 вольт, и нам по какой-то невероятной причине необходимо запитать ее от бытовой сети 220 вольт. Лампе необходим эффективный ток, равный:

Тогда емкость необходимого гасящего конденсатора окажется равна:

Имея такой , мы обретаем надежду получить нормальное свечение лампы, рассчитываем, что она по крайней мере не перегорит. Такой подход, когда мы исходим из эффективного значения тока, приемлем для активных нагрузок, таких как лампа или обогреватель.

Но что делать, если нагрузка нелинейна и включена через ? Допустим, необходимо зарядить свинцово-кислотный аккумулятор. Что тогда? Тогда зарядный ток окажется для батареи пульсирующим, и его значение будет меньше эффективного значения:

Иногда радиолюбителю может быть полезным источник питания, в котором гасящий конденсатор включен последовательно с диодным мостом, на выходе которого имеется в свою очередь конденсатор фильтра значительной емкости, к которому присоединена нагрузка постоянного тока. Получается своеобразный бестрансформаторный источник питания с конденсатором вместо понижающего трансформатора:

Здесь нагрузка в целом будет нелинейной, а ток станет уже далеко не синусоидальным, и вести расчеты необходимо будет несколько иначе. Дело в том, что сглаживающий конденсатор с диодным мостом и нагрузкой внешне проявят себя как симметричный стабилитрон, ведь пульсации при значительной емкости фильтра станут пренебрежимо малыми.

Когда напряжение на конденсаторе будет меньше какого-то значения — мост будет закрыт, а если выше — ток пойдет, но напряжение на выходе моста расти не будет. Рассмотрим процесс более подробно с графиками:

В момент времени t1 напряжение сети достигло амплитуды, конденсатор C1 также заряжен в этот момент до максимально возможного значения минус падение напряжения на мосте, которое будет равно приблизительно выходному напряжению. Ток через конденсатор C1 равен в этот момент нулю. Далее напряжение в сети стало уменьшаться, напряжение на мосте — тоже, а на конденсаторе C1 оно пока не изменяется, да и ток через конденсатор C1 пока что нулевой.

Далее напряжение на мосте меняет знак, стремясь уменьшиться до минус Uвх, и в тот момент через конденсатор C1 и через диодный мост устремляется ток. Далее напряжение на выходе моста не меняется, а ток в последовательной цепочке зависит от скорости изменения питающего напряжения, словно к сети подключен только конденсатор C1.

По достижении сетевой синусоидой противоположной амплитуды, ток через C1 опять становится равным нулю и процесс пойдет по кругу, повторяясь каждые пол периода. Очевидно, что ток течет через диодный мост только в промежутке между t2 и t3, и величину среднего тока можно вычислить, определив площадь закрашенной фигуры под синусоидой, которая будет равна:

Если выходное напряжение схемы достаточно мало, то данная формула приближается к полученной ранее. Если же выходной ток положить равным нулю, то получим:

То есть при обрыве нагрузки выходное напряжение станет равно амплитуде сетевого!!! Значит следует применять такие компоненты в схеме, чтобы каждый из них выдержал бы амплитуду напряжения питания.

Кстати, при снижении тока нагрузки на 10%, выражение в скобках уменьшится на 10%, то есть напряжение на выходе увеличится примерно на 30 вольт, если изначально имеем дело, скажем, с 220 вольтами на входе и с 10 вольтами на выходе. Таким образом, использование стабилитрона параллельно нагрузке строго обязательно!!!

А что если выпрямитель однополупериодный? Тогда ток необходимо рассчитывать по такой формуле:

При небольших значениях выходного напряжения ток нагрузки станет вдвое меньшим, чем при выпрямлении полным мостом. А напряжение на выходе без нагрузки окажется вдвое большим, так как здесь мы имеем дело с удвоителем напряжения.

Итак, источник питания с гасящим конденсатором рассчитывается в следующем порядке:

    Первым делом выбирают, каким будет выходное напряжение.

    Затем определяют максимальный и минимальный токи нагрузки.

    Если ток нагрузки предполагается непостоянный, стабилитрон параллельно нагрузке обязателен!

    Наконец, вычисляют емкость гасящего конденсатора.

Для схемы с двухполупериодным выпрямлением, для сетевой частоты 50 Гц, емкость находится по следующей формуле:

Полученный по формуле результат округляют в сторону емкости большего номинала (желательно не более 10%).

Следующим шагом находят ток стабилизации стабилитрона для максимального напряжения питания и минимального тока потребления:

Для однополупериодной схемы выпрямления гасящий конденсатор и максимальный ток стабилитрона вычисляют по следующим формулам:

Выбирая гасящий конденсатор, лучше ориентироваться на пленочные и металлобумажные конденсаторы. Конденсаторы пленочные небольшой емкости — до 2,2 мкф на рабочее напряжение от 250 вольт хорошо работают в данных схемах при питании от сети 220 вольт. Если же вам нужна большая емкость (более 10 мкф) — лучше выбрать конденсатор на рабочее напряжение от 500 вольт.

Андрей Повный

Для чего я заказал эти конденсаторы? Ответ банален. Чтобы «колхозить» светодиодное освещение. А куда ещё их применить можно? Расскажу, как рассчитать ёмкость балласта для светодиодной лампочки. Обзор контрольный. Кто не боится пользоваться такими драйверами, заходим. Для тех, кто не уважает подобные схемы, заходить не обязательно.

Для начала, как обычно, посмотрим, что было в посылке

А в посылке – два пакета с кондёрами, ровно по 50шт. в каждом. Заказал ещё вот эти кондёры
$7.85 (50шт.) у этого же продавца.

Выбирал не только по напряжению и ёмкости, но и по размерам. Они должны быть минимальны, иначе не везде применишь.



А ещё я заказал диоды.


$8.21 (1000шт.)


С диодами я конечно перебрал. 1000штук – это много. Но разница в цене между 100 и 1000 просто смешная. Диоды 1N4007 (1A 1000V)имеют широчайшее применение в импортной бытовой технике. Можно сказать, ни одно изделие без них не обходится. Можно и в нашей применить. Пусть лежат, если что, подарю часть своим знакомым.


Ну а теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная).


Добавил R4, будет вместо предохранителя, а также смягчит пусковой ток. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды, и рассчитываем его ёмкость по формуле (1).


Для расчётов нам необходимо знать падение напряжения на светодиодах. Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но ооочень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 - 30В и т.д.). Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Я не сторонник насилия. Поэтому рассчитаем лампочку на 100мА. Будет запас по мощности. А запас, как говорится, карман не тянет.
По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети, от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. Кстати при помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек. Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения сети. Чем больше превышает, тем болезненнее реагирует (это дружеский совет).
И всё же, на сколько точны номиналы ёмкостей, проверим. Сначала 2,2мкФ.


Теперь 1мкФ.

Погрешности небольшие, не более 2%. Можно смело брать.
Перейдём к практическому применению. Кому интересно, посмотрите, куда применил. Это уже было в одном из предыдущих обзоров, поэтому спрятал под спойлер.

Вырезка из обзора панелей

В одном из моих обзоров подключал панели к драйверу на кондёрах. Вот такая лампочка получилась из энергосберегайки. Напомню, модуль состоит из пяти параллелей. В каждой параллели 18 светодиодов 2835smd. Падение напряжения 51В.



Посчитаем ток из формулы (2):
Получаем ток =(220-51)*2,2/3,18=117мА. 51В*117мА=6Вт светодиодной мощности (66,7мВт на каждый светодиод-33% от номинала) - расчётная мощность светильника. Собираем, включаем. РАБОТАЕТ!

Но без защитного стекла или пластикового рассеивателя подобные лампочки использовать нельзя. Все светодиоды под фазой, в рабочем режиме касаться нельзя. А теперь посмотрим, что показывают приборы. Куда ж я без них?


Прибор показал 5,95Вт.
Конечно, такую лампочку можно использовать разве что в сарае.
А у людей есть и сараи и гаражи. И туда тоже надо что-то вкручивать (деревенский вариант, объясню почему). Летом часто езжу в деревню. А в деревне напряжение больше 200В не поднимается, бывает и ниже. А теперь посчитаем мощность нашей лампочки при 180В в сети. Всё по той же формуле сначала найдём ток, который течёт через светодиоды. Только вместо 220В в формуле поставим 180В. Итого 110мА*51В=5,6Вт. Как видим, мощность почти не изменилась. А вот лампочки накаливания при таком напряжении ели коптят.
Вариант с гаражом. В гараже наоборот, лампочки не успеваю менять – минимум 240В. Посчитаем ток и мощность при 260В, всё по той же формуле. Имеем: 145мА*51В=7,4Вт (41% от максимальной мощности). До перегорания слишком далеко. Вывод: и при 180В будет светить и при260В не перегорит.
А теперь попробую оценить качественные характеристики света. Попробовал осветить стену

Светит очень ярко, тёплым приятным светом, ярче чем лампа накаливания на 60Вт (снимок ниже). Можете сравнить яркость и цветовой тон. Всё снималось в одинаковых условиях, на одном и том же расстоянии от стены.

Мощность лампы накаливания я тоже измерил для чистоты эксперимента, тем же прибором при тех же условиях.
Лампа накаливания – 56,5Вт.
Светодиодная лампа – 5, 95Вт.
Обе лампочки вставлял по очереди в настольный светильник с отражателем. Вы его видели.


Теперь вырезка из последнего моего обзора. Правда, добавил измерения.

Вырезка из обзора Про диоды 1W LED Bulbs High power

При помощи этих светодиодов решил переделать светильник.


Лампочки уже испортились, а новые идут невысокого качества.


Светильник решил подключить через кондёры, большАя мощность мне не нужна, а электронный драйвер приберегу для чего-нибудь более стоящего. А вот и схема.


Все диоды соединяю последовательно.


Плату для драйвера тоже изготовил из того, что было (по-быстрому)






Даже штырь для крепления был. Дроссель убирать не стал. Оставил для веса, иначе лампа будет падать.




Сделал по всем правилам электробезопасности. Ни одного элемента под напряжением наружу не выходит. Плата закреплена печатными проводниками внутрь.
Посчитаем мощность получившейся лампочки. Сначала по формуле (2) найдём ток через светодиоды при ёмкости балласта 3,2мкФ. (220-18)*3,2/3,18=203,2мА. 203,2мА*18В=3,66Вт – расчётная мощность (при напряжении в сети 220В).
Смотрим на прибор


Прибор показывает 3,78Вт. Но ведь и в розетке 232В, а не 220В. Погрешность минимальна.
И, как обычно, посмотрим как светит.

Это светит лампочка на 40Вт. Естественно, все лампочки в равных условиях (выдержка на ручнике, расстояние до стены одинаковое).

Это мой светодиодный светильник. Фотоэкспонометр подсказывает, что светит ярче сороковки.

Ну и наконец третий прибор, где их (кондёры) можно применить. Много лет пользовался самодельной зарядкой.

Дополнительная информация


В ней тоже стоит токовый драйвер на конденсаторах.


Сделана была задолго до того, как я получил кондёры и диоды из Китая. Поэтому все детали отечественные.


Схема стандартная, как в китайских лампочках.


Именно для этой зарядки я и вывел формулу для расчёта ёмкости балласта. Так что, если кто хочет, может сам рассчитать и ток и время заряда с другими конденсаторами в балласте.

А теперь попытаемся подытожить. Постараюсь выделить все плюсы и минусы подобных схем.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к при этом необходимы конденсаторы больших размеров.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
+Схема очень проста, не требует особых навыков при изготовлении.
+Не требует особых материальных затрат при изготовлении. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Я написал своё видение, свое отношение к подобным схемам, Оно может отличаться от вашего. Но я его высказал. А вывод как всегда делать вам.
На этом всё. Больше к подробному разбору подобных схем возвращаться не буду. Измусолил их от и до.
А в конце для тех, кто отслеживает треки.

Итак, ядром и главным компонентом светодиодной лампочки является светодиод. С точки зрения схемотехники светоизлучающие диоды ничем не отличаются от любых других, разве только тем, что в смысле применения их как собственно диодов они обладают ужасными параметрами – очень маленьким допустимым обратным напряжением, относительно большой емкостью перехода, огромным рабочим падением напряжения (порядка 3.5 В для белых светодиодов – например, для выпрямительного диода это был бы кошмар) и т.д.

Однако мы понимаем, что главная ценность светодиодов для человечества состоит в том, что они светятся, причем порой достаточно ярко. Чтобы светодиод светился долго и счастливо, ему необходимо два условия: стабильный ток через него и хороший теплоотвод от него. Качество теплоотвода обеспечивается различными конструкционными методами, потому сейчас мы не будем останавливаться на этом вопросе. Поговорим о том, зачем и как современное человечество достигает первой цели – стабильного тока.

К слову, о белых светодиодах

Понятное дело, что для освещения более всего интересны белые светодиоды. Делаются они на основе кристалла, излучающего синий свет, залитого люминофором, переизлучающим часть энергии в желто-зеленой области. На заглавной картинке хорошо видно, что токоведущие проволочки уходят в нечто желтое - это и есть люминофор; кристалл расположен под ним. На типичном спектре белого светодиода хорошо виден синий пик:

Спектры светодиодов с разными цветовыми температурами: 5000K (синий), 3700K (зеленый), 2600K (красный). Подробнее .

Мы уже разобрались, что в схемотехническом смысле светодиод отличается от любого другого диода только значениями параметров. Здесь надо сказать, что прибор это принципиально нелинейный; то есть, знакомому со школы закону Ома он совершенно не подчиняется. Зависимость тока от приложенного напряжения на таких устройствах описывается т.н. вольт-амперной характеристикой (ВАХ), причем для диода она носит экспоненциальный характер. Из этого следует, что самое незначительное изменение приложенного напряжения приводит к огромному изменению тока, но и это еще не все – при изменении температуры (а также старении) ВАХ смещается. Кроме этого, положение ВАХ слегка разное для разных диодов. Оговорю отдельно – не только для каждого типа, но для каждого экземпляра, даже из одной партии. По этой причине распределение тока через диоды, включенные параллельно, обязательно будет неравномерным, что не может хорошо сказаться на долговечности конструкции. При изготовлении матриц стараются либо использовать последовательное включение, что решает проблему в корне, либо выбирать диоды с примерно одинаковым прямым падением напряжения. Чтобы облегчить задачу, производители обычно указывают так называемый «бин» - код выборки по параметрам (по напряжению в том числе), в которую попадает конкретный экземпляр.


ВАХ белого светодиода.

Соответственно, чтобы все работало хорошо, светодиод необходимо подключать к устройству, которое вне зависимости от внешних факторов будет с высокой точностью автоматически подбирать такое напряжение, при котором в цепи протекает заданный ток (например, 350 мА для одноваттных светодиодов), причем контролировать процесс непрерывно. Вообще, такое устройство называется источником тока, но в случае светодиодов в наши дни модно употреблять заморское слово «драйвер». В целом, драйвером часто называют решения, главным образом предназначенные для работы в конкретном применении – например, «драйвер MOSFET» - микросхема, предназначенная для управления конкретно мощными полевыми транзисторами, «драйвер семисегментного индикатора» - решение для управления конкретно семисегментниками, и т.д. То есть, называя источник тока драйвером светодиодов, люди намекают, что этот источник тока по задумке предназначен именно для работы со светодиодами. Например, он может иметь специфичные функции – что-нибудь в духе наличия светового интерфейса DMX-512 , определения обрыва и короткого замыкания на выходе (а обычный источник тока, вообще, должен без проблем работать и на короткое замыкание), и т.п. Тем не менее, понятия часто путают, и, например, называют драйвером самый обычный адаптер (источник напряжения!) для светодиодных лент.

Кроме того, устройства, предназначенные для задания режима осветительного прибора, часто называют балластом.

Итак, источники тока. Самым простым источником тока может быть сопротивление, включенное последовательно со светодиодом. Так делают при малых мощностях (где-то до полуватта), например, в тех же светодиодных лентах. С увеличением мощности потери на резисторе становятся слишком велики, а требования к стабильности тока повышаются, и потому возникает необходимость в более продвинутых устройствах, поэтичный образ которых я нарисовал выше. Все они строятся по одинаковой идеологии – в них имеется регулирующий элемент, контролируемый обратной связью по току.

Стабилизаторы тока разделяются на два типа – линейные и импульсные. Линейные схемы – родственники резистора (сам резистор и его аналоги также относятся к этому классу). Особого выигрыша в КПД они обычно не дают, зато повышают качество стабилизации тока. Импульсные схемы являют собой наилучшее решение, однако они сложнее и дороже.

Давайте теперь кратко пробежимся по тому, что в наши дни можно увидеть внутри светодиодных ламп или рядом с ними.

1. Конденсаторный балласт

Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:

Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность – я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.

Номинал резистора в схеме выше рассчитан для тока светодиода около 10 – 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000 ~ 11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде – около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).

Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.

Считая по формуле из учебника , легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели – катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.

Лирическое отступление

«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее - сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву "μ" с оторванным хвостиком.

Итак, 1 Ф/F = 1000 мФ/mF = 1000000 мкФ/uF/μF , и никак иначе!

Кроме того, «Фарад» - мужского рода , так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!

Как я уже говорил, преимущество у такого балласта только одно – простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.

2. Бестрансформаторная понижающая топология

Это схемотехническое решение относится к семейству бестрансформаторных преобразователей, включающему в себя понижающую, повышающую и инвертирующую топологии. Кроме того, к бестрансформаторным преобразователям также относится SEPIC , преобразователь Чука и другая экзотика, вроде переключаемых конденсаторов. В принципе, драйвер светодиодов можно построить на основе любой из них, однако на практике в этом качестве они встречаются гораздо реже (хотя повышающая топология применяется, например, во многих фонариках).

Один из вариантов драйвера на основе бестрансформаторной понижающей топологии приведен на рисунке ниже.

В живой природе такое включение можно наблюдать на примере ZXLD1474 или варианта включения ZXSC310 (которая в исходной схеме включения, кстати, как раз повышающий преобразователь).

Здесь светодиод включается последовательно с катушкой. Схема управления отслеживает ток с помошью измерительного резистора R1 и управляет ключом T1. Если ток через светодиод падает ниже заданного минимума, транзистор открывается, и катушка с включенным последовательно с ней светодиодом оказывается подключенной к источнику питания. Ток в катушке начинает линейно нарастать (красный участок на графике), диод D1 в это время заперт. Как только схема управления регистрирует достижение током заданного максимума, ключ закрывается. В соответствии с первым законом коммутации катушка стремится поддержать ток в цепи за счет энергии, накопленной в магнитном поле. В этот момент ток протекает через диод D1. Энергия поля катушки расходуется, сила тока линейно убывает (зеленый участок на графике). Когда ток падает ниже заданного минимума, схема управления регистрирует это и снова открывает транзистор, подкачивая энергию в систему – процесс повторяется. Таким образом, ток поддерживается в заданных пределах.

Отличительная особенность понижающей топологии – возможность сделать пульсации светового потока сколь угодно малыми, поскольку в таком включении ток через светодиод никогда не прерывается. Путь приближения к идеалу лежит через увеличение индуктивности и повышение частоты коммутации (сегодня существуют преобразователи с рабочими частотами до нескольких мегагерц).

На основе такой топологии был сделан драйвер лампы Gauss, рассмотренной в предыдущей статье.

Недостатком метода является отсутствие гальванической развязки – когда транзистор открыт, схема оказывается напрямую соединенной с источником напряжения, в случае сетевых светодиодных ламп – с сетью, что может быть небезопасно.

3. Обратноходовый преобразователь

Несмотря на то, что обратноходовый преобразователь содержит нечто, похожее на трансформатор, в данном случае эту деталь правильнее называть двухобмоточным дросселем, поскольку ток никогда не течет через обе обмотки одновременно. В действительности по принципу действия обратноходовый преобразователь похож на бестрансформаторные топологии. Когда T1 открыт, ток в первичной обмотке нарастает, энергия в запасается в магнитном поле; при этом полярность включения вторичной обмотки сознательно подбирается такой, чтобы диод D3 на этом этапе был закрыт и тока на вторичной стороне не текло. Ток нагрузки в этот момент поддерживает конденсатор С1. Когда T1 закрывается, полярность напряжения на вторичной обмотке становится обратной (поскольку производная тока в первичной обмотке меняет знак), D3 открывается и накопленная энергия передается на вторичную сторону. В смысле стабилизации тока все то же самое – схема управления анализирует падение напряжения на резисторе R1 и подстраивает временны е параметры так, чтобы ток через светодиоды оставался постоянным. Чаще всего обратноходовый преобразователь применяется при мощностях не более 50 Вт; далее он перестает быть целесообразным из-за возрастающих потерь и необходимых габаритов трансформатора-дросселя.

Надо сказать, что существуют варианты обратноходовых драйверов без оптоизолятора (например). Они полагаются на тот факт, что токи первичной и вторичной обмоток связаны, и при определенных оговорках можно ограничиться анализом тока первичной обмотки (или, чаще, отдельной вспомогательной обмотки) – это позволяет сэкономить на деталях и, соответственно, удешевить решение.

Обратноходовый преобразователь хорош тем, что он, во-первых, обеспечивает изоляцию вторичной части от сети (выше безопасность), а, во-вторых, позволяет относительно легко и дешево изготавливать лампы, совместимые со стандартными диммерами для ламп накаливания, а также устраивать коррекцию коэффициента мощности.

Лирическое отступление

Обратноходовый преобразователь называется так потому, что изначально подобный метод применялся для получения высокого напряжения в телевизорах на основе электронно-лучевых трубок. Источник высокого напряжения был схемотехнически объединен со схемой горизонтальной развертки, и импульс высокого напряжения получался во время обратного хода электронного луча.

Немного о пульсациях

Как уже было упомянуто, импульсные источники работают на достаточно высоких частотах (на практике – от 30 кГц, чаще около 100 кГц). Потому ясно, что сам по себе исправный драйвер не может быть источником большого коэффициента пульсаций – прежде всего потому, что на частотах выше 300 Гц этот параметр просто не нормируется, ну и, кроме того, высокочастотные пульсации в любом случае достаточно легко отфильтровать. Проблема заключается в сетевом напряжении.

Дело в том, что, разумеется, все перечисленные выше схемы (кроме схемы с гасящим конденсатором) работают от постоянного напряжения. Потому на входе любого электронного балласта прежде всего стоит выпрямитель и накопительный конденсатор. Предназначением последнего является питать балласт в те моменты, когда сетевое напряжение уходит ниже порога работы схемы. И здесь, увы, необходим компромисс – высоковольтные электролитические конденсаторы большой емкости, во-первых, стоят денег, а, во-вторых, занимают драгоценное место в корпусе лампы. Здесь же коренится причина проблем с коэффициентом мощности. Описанная схема с выпрямителем имеет неравномерное потребление тока. Это приводит к возникновению высших гармоник оного, что и является причиной ухудшения интересующего нас параметра. Причем чем лучше мы будем пытаться отфильтровать напряжение на входе балласта, тем более низкий коэффициент мощности мы получим, если не предпринимать отдельных усилий. Этим объясняется тот факт, что почти все лампы с низким коэффициентом пульсаций, которые мы видели, показывают очень посредственный коэффициент мощности, и наоборот (разумеется, введение активного корректора коэффициента мощности скажется на цене, потому на нем пока что предпочитают экономить). Добавить метки

Среди радиолюбителей сейчас весьма популярны сетевые блоки питания, в которых роль балластного элемента выполняет конденсатор. Выбор конденсатора для этой цели имеет некоторые особенности, и их необходимо учитывать. Основной параметр здесь - допустимое значение амплитуды напряжения частотой 50 Гц.

Как известно, номинальным напряжением конденсатора, предназначенного для применения в радиоэлектронной аппаратуре, называют значение наибольшего постоянного напряжения, при котором конденсатор надежно работает в течение установленного срока службы. При работе конденсатора в цепях переменного тока амплитуда переменного напряжения на нем должна быть всегда меньше (в крайнем случае равна) номинального напряжения, а насколько меньше - зависит всецело от типа конденсатора. Так, например, для конденсатора МБГО на номинальное напряжение 630 В допустимая амплитуда переменного напряжения частотой 50 Гц равна 126 В , а для МБМ на напряжение 1000 В - 250 В .

Надежность балластного конденсатора бестрансформаторного блока питания может быть обеспечена при условии, что значение допустимой для конденсатора амплитуды переменного напряжения больше амплитуды напряжения сети. Если действующее значение напряжения равно 220 В, то амплитудное будет

На указанные в таблице характеристики наложен ряд ограничений.

Во-первых, верхняя граница допустимой амплитуды переменного напряжения выбрана равной 630 В. Больший запас по амплитуде не прибавит блоку надежности, а габариты увеличит значительно. Во-вторых, для емкости установлена нижняя граница - 0,22 мкФ. Выбранный емкостный интервал удовлетворяет большинству практических случаев. Третье ограничение - наибольшая масса 60 г; оно комментариев не требует.

И наконец, в-четвертых, в таблицу внесено не менее трех номиналов однотипных конденсаторов, соответствующих первым трем ограничениям.

Таблица обеспечивает выбор номинала емкости, номинального напряжения и типа балластного конденсатора для бестрансформаторного устройства, рассчитанного на подключение к сети 200 В, 50 Гц и на потребляемый ток 12...100 мА. Ток может быть увеличен параллельным соединением двухтрех конденсаторов.

По таблице возможно сравнение нескольких вариантов выбора из конденсаторов различных типов емкости, близкой к расчетной. Сравнение проводят по знаку и значению отклонения емкости от расчетного значения, запасу электрической прочности изоляции, а также по массе и объему конденсаторов. Объем рассчитан по линейным размерам конденсаторов. Коэффициент запаса по электрической прочности равен отношению допустимой для конденсатора амплитуды напряжения с частотой 50 Гц к амплитуде напряжения сети.

Для внесенных в таблицу типов конденсаторов некоторые значения емкости остались за ее рамками. Направление поиска в справочнике отсутствующих значений емкости в таблице показаны отточиями.

В силу наложенных ограничений некоторые типы конденсаторов не вошли в таблицу. Среди них - МБГЧ, К42-19, К75-10 и К78-2, справочные характеристики которых не соответствуют третьему и четвертому ограничениям. Найти подходящий среди этих конденсаторов можно по справочнику с учетом первого ограничения.

Литература

  1. Электрические конденсаторы и конденсаторные установки. - М.: Энергоатомиздат, 1987, с. 495.
  2. Справочник по электрическим конденсаторам. - М.: Радио и связь, 1983, с. 168.
  3. Бирюков С. Расчет сетевого источника питания с гасящим конденсатором. - Радио, 1997, № 5, с. 48 - 50.


В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные