Что относят к цифровой технике. Цифровые технологии: понятие, задачи. Как устроен типичный МК

Чтобы точно выбрать то, что вам требуется, нужно иметь хотя бы общее представление о той техники, которую вы собираетесь купить.

Немного о самых распространенных видах современной техники. Видеомагнитофоны, видеоплееры, видеопроекторы, домашнее кинотеатры, DVD-плееры, наушники, телевизионные приставки, телевизоры – все это можно выделить в одну группу, о которой подробнее расскажем ниже. Вторая группа – это видео и фотокамеры, диктофоны, часы и радиоприемники и всевозможные аксессуары.

Более молодое поколение может остановить свой выбор на CD и MP3-плеерах, фотокамерах, часах и диктофонах.

CD и MP3-плееры выполняют основную функцию, воспроизведение музыки, только CD плеер проигрывает или читает CD-диски, а MP3-плеер проигрывает музыку, предварительно туда закачанную. MP3-плееры различаются по объему информации. Чем больше объем, тем выше их цена.

Фотокамеры в настоящее время почти все цифровые, хотя еще можно встретить простые пленочные фотоаппараты.
Цифровые фотоаппараты также бывают зеркальными. Отличаются все цифровые фотоаппараты размером матрицы, т.е. количество точек на дюйм, которое они могут передать, выдержкой и диафрагмой либо автоматической либо с ручной настройкой, а также своими дополнительными функциями.

Из перечисленной выше техники из первой группы несложно самому собрать домашний кинотеатр. Рассмотрим из чего состоит вся эта система: AV-ресивера, колонок, экрана кинотеатра, DVD-проигрывателя и видеомагнитофона.

Экраном домашнего кинотеатра может быть как телевизор диагональю более 26 дюймов так, проекционный телевизор, так и плазменная панель, которая поможет нам увидеть разнообразие всех цветов оттенков. Также в каталоге электроники вы можете подобрать соответствующие аксессуары для телевизора.

Для детей, например, можно выбрать игровую телевизионную приставку, которую можно подключить к телевизору.
DVD-проигрыватель – это устройство для чтения DVD-дисков и служит для просмотра фильмов в самом качественном формате на сегодняшний день. Кроме этого, на DVD-диск можем записывать свои любимые фильмы и музыку. Видеомагнитофон дополняет домашний кинотеатр своей возможностью просматривать VHS-кассет.

AV-ресивер распределяет звуки, поочередно то на одну колонку, то на другую, чем создается ощущение, что мы находимся гуще событий, которые происходят а экране. Колонки расставляют обычно по периметру, соединяют их специальным кабелем. Можно использовать не колонки, а музыкальный центр, например, который у вас уже есть в квартире, к которому без труда можно подсоединить AV-ресивер.

Также большим спросом пользуются диктофоны, которые можно выбрать в каталоге интернет-портала «Три клика» с удобным поиском товаров, магазинов и скидок.

Легкого вам выбора!

Одной из областей применения Общероссийского классификатора основных средств является бухгалтерский учет в учреждениях. Согласно ОКОФ бухгалтер должен определить код актива и отразить его на соответствующем счете. В ОК 013-94 содержался термин «оргтехника». Что к ней относится, было расшифровано в группировке с кодами 14 301 0000 - 14 301 0440. Как обстоят дела после вступления в силу нового классификатора, рассмотрим далее.

Оргтехника и вычислительная техника: почему возникает путаница

В классификаторе ОК 013-94 понятия вычислительной и оргтехники обособлены. Они оба включены в раздел «Машины и оборудование», но для каждого из них предназначен свой подраздел.

Однако при упоминании всего оборудования организации, которое не относится к машинам, станкам, механизмам и т.п. и предназначено для использования в процессе административного управления или в процессе инженерного труда, принято употреблять термин «оргтехника».

В это понятие включают компьютеры, принтеры, сканеры, телефоны, калькуляторы, шредеры, копировальную технику, факсимильные аппараты, проекторы и иные орудия офисного труда.

К списку добавляют оборудование для чертежных работ, плоттеры, ламинаторы, дыроколы, механические точилки для карандашей, штемпели, брошюраторы и иное, называя это «малой оргтехникой».

Смешение двух понятий происходит из-за того, что вспомогательное оборудование для вычислительной техники, такое как сканер, считыватель штрих-кодов, принтер, дисплей, электронная графическая доска, чертежный автомат и т.п., по правилам классификатора ОК 013-94 учитывается вместе с компьютером как единый объект классификации. А фактически каждый из них может быть использован самостоятельно, без подключения к вычислительной технике.

Такая ситуация сложилась из-за устаревания указанного классификатора.

Но бухгалтер при принятии решения, что относится к оргтехнике в бухучете, обязан руководствоваться нормативными документами. Поэтому до 2017 года к оргтехнике следовало отнести:

  • множительное оборудование (не подключенное к компьютеру),
  • копировальное оборудование (не подключенное к компьютеру),
  • автоматизированные телефонные станции, обеспечивающие работу офисов,
  • печатные машинки,
  • калькуляторы,
  • телефоны (проводные и сотовые),
  • оборудование для конференций (микрофоны, проекторы, экраны и пр.),
  • шредеры,
  • счетчики и детекторы банкнот,
  • устройство пневмопочты и т.п. автономное офисное оборудование.

Согласно тем же нормам к оргтехнике нельзя отнести:

  • принтеры и МФУ, подключенные к компьютеру,
  • планшеты,
  • коммуникаторы,
  • смартфоны и т.п.

Такое деление определено сведениями из подраздела «Средства механизации и автоматизации управленческого и инженерного труда», позволяющими определить, что относится к оргтехнике. Перечень того, что надо считать вычислительной техникой, приведен в подразделе «Техника электронно-вычислительная». Оба этих вида техники по классификатору ОК 013-94 относятся к информационному оборудованию.

Оргтехника и новый ОКОФ

Устаревший классификатор ОК 013-94 с 2017 года был заменен на ОКОФ ОК 013-2014 .

В его нормах также присутствует подраздел, включающий информационное оборудование. Но термин «оргтехника» из него исключен, а компьютеры и периферийные устройства к ним выделены в отдельный подраздел.

Однако перечень того, что ранее относилось к оргтехнике, остался. Он в отредактированном виде добавлен в группировку «Прочие машины и оборудование, включая хозяйственный инвентарь, и другие объекты» под кодом 330.28.23.

Поэтому с 2017 года ответ на вопросы о том, что такое оргтехника и что к ней относится, в основном определяется перечнем в классификаторе основных фондов, маркированным этим кодом.

1. Лекция: Базовые понятия цифровой электроники

В лекции рассказывается о базовых терминах цифровой электроники, о цифровых сигналах, об уровнях представления цифровых устройств, об их электрических и временных параметрах.

Аналог или цифра?

Для начала дадим несколько базовых определений.

Сигнал - это любая физическая величина (например, температура, давление воздуха, интенсивность света, сила тока и т.д.), изменяющаяся со временем. Именно благодаря этому изменению сигнал может нести в себе какую-то информацию.

Электрический сигнал - это электрическая величина (например, напряжение, ток, мощность), изменяющаяся со временем. Вся электроника в основном работает с электрическими сигналами, хотя сейчас все больше используются световые сигналы, которые представляют собой изменяющуюся во времени интенсивность света.

Аналоговый сигнал - это сигнал, который может принимать любые значения в определенных пределах (например, напряжение может плавно изменяться в пределах от нуля до десяти вольт). Устройства, работающие только с аналоговыми сигналами, называются аналоговыми устройствами. Название "аналоговый" подразумевает, что сигнал изменяется аналогично физической величине, то есть непрерывно.

Цифровой сигнал - это сигнал, который может принимать только два (иногда - три) значения, причем разрешены некоторые отклонения от этих значений (рис. 1.1) . Например, напряжение может принимать два значения: от 0 до 0,5 В (уровень нуля) или от 2,5 до 5 В (уровень единицы). Устройства, работающие исключительно с цифровыми сигналами, называются цифровыми устройствами.

Рис. 1.1. Электрические сигналы: аналоговый (слева) и цифровой (справа)

Можно сказать, что в природе практически все сигналы - аналоговые, то есть они изменяются непрерывно в каких-то пределах. Именно поэтому первые электронные устройства были аналоговыми. Они преобразовывали физические величины в пропорциональные им напряжение или ток, производили над ними какие-то операции и затем выполняли обратные преобразования в физические величины. Например, голос человека (колебания воздуха) с помощью микрофона преобразуется в электрические колебания, затем эти электрические сигналы усиливаются электронным усилителем и с помощью акустической системы снова преобразуются в колебания воздуха - в более сильный звук.

Все операции, производимые электронными устройствами над сигналами, можно условно разделить на три большие группы:

    обработка (или преобразование);

    передача;

    хранение.

В случае аналоговых сигналов все это существенно ухудшает полезный сигнал, так как все его значения разрешены (рис. 1.2) . Поэтому каждое преобразование, каждое промежуточное хранение, каждая передача по кабелю или эфиру ухудшает аналоговый сигнал, иногда вплоть до его полного уничтожения. Надо еще учесть, что все шумы, помехи и наводки принципиально не поддаются точному расчету, поэтому точно описать поведение любых аналоговых устройств абсолютно невозможно. К тому же со временем параметры всех аналоговых устройств изменяются из-за старения элементов, поэтому характеристики этих устройств не остаются постоянными.

Рис. 1.2. Искажение шумами и наводками аналогового (слева) и цифрового (справа) сигналов

В отличие от аналоговых, цифровые сигналы, имеющие всего два разрешенных значения, защищены от действия шумов, наводок и помех гораздо лучше. Небольшие отклонения от разрешенных значений никак не искажают цифровой сигнал, так как всегда существуют зоны допустимых отклонений (рис. 1.2). Именно поэтому цифровые сигналы допускают гораздо более сложную и многоступенчатую обработку, гораздо более длительное хранение без потерь и гораздо более качественную передачу, чем аналоговые. К тому же поведение цифровых устройств всегда можно абсолютно точно рассчитать и предсказать. Цифровые устройства гораздо меньше подвержены старению, так как небольшое изменение их параметров никак не отражается на их функционировании. Кроме того, цифровые устройства проще проектировать и отлаживать. Понятно, что все эти преимущества обеспечивают бурное развитие цифровой электроники.

Однако у цифровых сигналов есть и крупный недостаток. Дело в том, что на каждом из своих разрешенных уровней цифровой сигнал должен оставаться хотя бы в течение какого-то минимального временного интервала, иначе его невозможно будет распознать. А аналоговый сигнал может принимать любое свое значение бесконечно малое время. Можно сказать и иначе: аналоговый сигнал определен в непрерывном времени (то есть в любой момент времени), а цифровой - в дискретном (то есть только в выделенные моменты времени). Поэтому максимально достижимое быстродействие аналоговых устройств всегда принципиально больше, чем цифровых. Аналоговые устройства могут работать с более быстро меняющимися сигналами, чем цифровые. Скорость обработки и передачи информации аналоговым устройством всегда может быть выше, чем скорость обработки и передачи цифровым устройством.

Кроме того, цифровой сигнал передает информацию только двумя уровнями и изменением одного своего уровня на другой, а аналоговый - еще и каждым текущим значением своего уровня, то есть он более емкий с точки зрения передачи информации. Поэтому для передачи того объема информации, который содержится в одном аналоговом сигнале, чаще всего приходится использовать несколько цифровых (чаще всего от 4 до 16).

К тому же, как уже отмечалось, в природе все сигналы - аналоговые, то есть для преобразования их в цифровые и обратного преобразования требуется применение специальной аппаратуры (аналого-цифровых и цифро-аналоговых преобразователей). Так что ничто не дается даром, и плата за преимущества цифровых устройств может порой оказаться неприемлемо большой.

Уровни представления цифровых устройств

Все цифровые устройства строятся из логических микросхем, каждая из которых (рис. 1.3) обязательно имеет следующие выводы (или, как их еще называют в просторечии, "ножки"):

    выводы питания: общий (или "земля") и напряжения питания (в большинстве случаев - +5 В или +3,3 В), которые на схемах обычно не показываются;

    выводы для входных сигналов (или ""входы"), на которые поступают внешние цифровые сигналы;

    выводы для выходных сигналов (или "выходы"), на которые выдаются цифровые сигналы из самой микросхемы.

Каждая микросхема преобразует тем или иным способом последовательность входных сигналов в последовательность выходных сигналов. Способ преобразования чаще всего описывается или в виде таблицы (так называемой таблицы истинности), или в виде временных диаграмм, то есть графиков зависимости от времени всех сигналов.

Рис. 1.3. Цифровая микросхема

Все цифровые микросхемы работают с логическими сигналами, имеющими два разрешенных уровня напряжения. Один из этих уровней называется уровнем логической единицы (или единичным уровнем), а другой - уровнем логического нуля (или нулевым уровнем). Чаще всего логическому нулю соответствует низкий уровень напряжения, а логической единице - высокий уровень. В этом случае говорят, что принята "положительная логика". Однако при передаче сигналов на большие расстояния и в системных шинах микропроцессорных систем порой используют и обратное представление, когда логическому нулю соответствует высокий уровень напряжения, а логической единице - низкий уровень. В этом случае говорят об "отрицательной логике". Иногда логический нуль кодируется положительным уровнем напряжения (тока), а логическая единица - отрицательным уровнем напряжения (тока), или наоборот. Есть и более сложные методы кодирования логических нулей и единиц. Но мы в основном будем говорить о положительной логике.

Для описания работы цифровых устройств используют самые различные модели, отличающиеся друг от друга сложностью, точностью, большим или меньшим учетом тонких физических эффектов. В основном эти модели используются при компьютерных расчетах цифровых схем. В настоящее время существуют компьютерные программы, которые не только рассчитывают готовые схемы, но способны и проектировать новые схемы по формализованным описаниям функций, которые данное устройство должно выполнять. Это довольно удобно, но ни одна программа никогда не может сравниться с человеком. По-настоящему эффективные, минимизированные по аппаратуре, наконец, красивые схемы может разрабатывать только человек, который всегда подходит к проектированию творчески и использует оригинальные идеи.

Разработчик цифровой аппаратуры тоже использует своеобразные модели или, как еще можно сказать, различные уровни представления цифровых схем. Но, в отличие от компьютера, человек может гибко выбирать нужную модель - ему надо только взглянуть на схему, чтобы понять, где достаточно простейшей модели, а где требуется более сложная. То есть человек никогда не будет делать лишней, избыточной работы и, следовательно, не будет вносить дополнительных ошибок, свойственных любой, даже самой сложной, модели. Правда, простота цифровых устройств по сравнению с аналоговыми обычно не провоцирует на чересчур серьезные ошибки.

В подавляющем большинстве случаев для разработчика цифровых схем достаточно трех моделей, трех уровней представления о работе цифровых устройств:

    Логическая модель.

    Модель с временными задержками.

    Модель с учетом электрических эффектов (или электрическая модель).

Опыт показывает, что первой, простейшей модели достаточно примерно в 20% всех случаев. Она применима для всех цифровых схем, работающих с низкой скоростью, в которых быстродействие не принципиально. Привлечение второй модели, учитывающей задержки срабатывания логических элементов, позволяет охватить около 80% всех возможных схем. Ее применение необходимо для всех быстродействующих устройств и для случая одновременного изменения нескольких входных сигналов. Наконец, добавление третьей модели, учитывающей входные и выходные токи, входные и выходные сопротивления и емкости элементов, дает возможность проектирования практически 100% цифровых схем. В первую очередь, эту третью модель надо применять при объединении нескольких входов и выходов, при передаче сигналов на большие расстояния и при нетрадиционном включении логических элементов (с переводом их в аналоговый или в линейный режимы).

Для иллюстрации работы перечисленных моделей рассмотрим работу самого простейшего логического элемента - инвертора. Инвертор изменяет (инвертирует) логический уровень входного сигнала на противоположный уровень выходного сигнала или, как еще говорят, изменяет полярность логического сигнала. Его таблица истинности (табл. 1.1) элементарно проста, так как возможно только две ситуации: нуль на входе или единица на входе. На рис. 1.4 показано, как будет выглядеть выходной сигнал инвертора при использовании трех его моделей (трех уровней его представления). Такие графики логических сигналов называются временными диаграммами, они позволяют лучше понять работу цифровых схем.

Из рисунка видно, что в первой, логической модели считается, что элемент срабатывает мгновенно, любое изменение уровня входного сигнала сразу же, без всякой задержки приводит к изменению уровня выходного сигнала. Во второй модели выходной сигнал изменяется с некоторой задержкой относительно входного. Наконец, в третьей модели выходной сигнал не только задерживается по сравнению с входным, но и его изменение происходит не мгновенно - процесс смены уровней сигнала (или, как говорят, фронт сигнала ) имеет конечную длительность. Кроме того, третья модель учитывает изменение уровней логических сигналов.

Рис. 1.4. Три уровня представления цифровых устройств

На практике разработчик, как правило, в начале проектирования пользуется исключительно первой моделью, а затем для некоторых узлов применяет вторую или (реже) еще и третью модель. При этом первая модель не требует вообще никаких цифровых расчетов, для нее достаточно только знание таблиц истинности или алгоритмов функционирования микросхем. Вторая модель предполагает расчет (по сути, суммирование) временных задержек элементов на пути прохождения сигналов (рис. 1.5). В результате этого расчета может выясниться, что требуется внесение изменений в схему.

Рис. 1.5. Суммирование задержек элементов

Рис. 1.6. Суммирование входных токов элементов

Расчеты по третьей модели могут быть различными, в том числе и довольно сложными, но в большинстве случаев они все-таки сводятся всего лишь к суммированию входных и выходных токов логических элементов (рис. 1.6). В результате этих расчетов может выясниться, что требуется применение микросхем с более мощными выходами или включение дополнительных элементов.

То есть проектирование цифровых устройств принципиально отличается от проектирования аналоговых устройств, при котором сложные расчеты абсолютно неизбежны. Разработчик цифровых устройств имеет дело только с логикой, с логическими сигналами и с алгоритмами работы цифровых микросхем. А что происходит внутри этих микросхем, для него практически не имеет значения.

Справочные данные на цифровые микросхемы обычно содержат большой набор параметров, каждый из которых можно отнести к одному из трех перечисленных уровней представления, к одной из трех моделей.

Например, таблица истинности микросхемы (для простых микросхем) или описание алгоритма ее работы (для более сложных микросхем) относится к первому, логическому уровню. Поэтому знать их наизусть каждому разработчику необходимо в любом случае.

Величины задержек логических сигналов между входами и выходами относятся ко второму уровню представления. Типичные величины задержек составляют от единиц наносекунд (1 нс = 10 -9 с) до десятков наносекунд. Величины задержек для разных микросхем могут быть различными, поэтому в справочниках всегда указывается максимальное значение. Необходимо также помнить, что задержка при переходе выходного сигнала из единицы в нуль (t PHL), как правило, отличается от задержки при переходе выходного сигнала из нуля в единицу (t PLH). Например, для одной и той же микросхемы t PLH <11 нс, а t PHL <8 нс. Здесь английская буква P означает Propagation (распространение), L означает Low (низкий уровень сигнала, нуль), а H - High (высокий уровень сигнала, единица). Количество величин задержек, определяемых справочником для микросхемы, может изменяться от двух до нескольких десятков.

Уровни входных и выходных токов, а также уровни входных и выходных напряжений относятся к третьему уровню представления.

Входной ток микросхемы при приходе на вход логического нуля (I IL), как правило, отличается от входного тока при приходе на вход логической единицы (IIH). Например, I IL = – 0,1 мА, а I IH = 20 мкА (считается, что положительный ток втекает во вход микросхемы, а отрицательный - вытекает из него). Точно так же выходной ток микросхемы при выдаче логического нуля (I OL) может отличаться (и обычно отличается) от выходного тока при выдаче логической единицы (I OH). Например, для одной и той же микросхемы I OH <– 0,4 мА,а I OL <8 мА (считается, что положительный ток втекает в выход микросхемы, а отрицательный - вытекает из него). Надо также учитывать, что разные входы и выходы одной и той же микросхемы могут иметь различные входные и выходные токи.

Для выходных напряжений логического нуля (U OL) и единицы (U OH) в справочниках обычно задаются предельно допустимые значения при данной величине выходного тока. В этом случае, чем больше выходной ток, тем меньше напряжение логической единицы и тем больше напряжение логического нуля. Например, U OH > 2,5 В (при I OH <–0,4 мА),а U OL <0,5 В (при I OL < 8 мА).

Задаются в справочниках также и допустимые уровни входных напряжений, которые микросхема еще воспринимает как правильные логические уровни нуля и единицы. Например, U IH > 2,0 В, U IL < 0,8 В. Как правило, входные напряжения логических сигналов не должны выходить за пределы напряжения питания.

В обозначениях напряжений и токов буква I означает Input (вход), буква O означает Output (выход), L - Low (нуль), а H - High (единица).

К третьему уровню представления относятся также величины внутренней емкости входов микросхемы (обычно от единиц до десятков пикофарад) и допустимая величина емкости, к которой может подключаться выход микросхемы, то есть емкость нагрузки C L (порядка 100 пФ). Отметим, что 1 пФ = 10 -12 Ф. На этом же уровне представления задаются максимально допустимые величины длительности положительного фронта (t LH) и отрицательного фронта (t HL) входного сигнала, например, t HL < 1,0 мкс, t LH < 1,0 мкс. То есть при большей длительности перехода входного сигнала из единицы в нуль и из нуля в единицу микросхема может работать неустойчиво, неправильно, нестандартно.

К третьему уровню представления можно отнести также такие параметры, как допустимое напряжение питания микросхемы (U CC) и максимальный ток, потребляемый микросхемой (I CC). Например, может быть задано

4,5 В

При этом потребляемый ток I CC зависит от уровней выходных токов микросхемы I OH и I OL . Эти параметры надо учитывать при выборе источника питания для проектируемого устройства, а также в процессе изготовления печатных плат - при выборе ширины токоведущих дорожек.

Наконец, к третьему же уровню относится ряд параметров, которые часто упоминаются в литературе, но не всегда приводятся в справочных таблицах:

    Порог срабатывания - уровень входного напряжения, выше которого сигнал воспринимается как единица, а ниже - как нуль. Для наиболее распространенных ТТЛ микросхем он примерно равен 1,3...1,4 В.

    Помехозащищенность - характеризует величину входного сигнала помехи, накладывающегося на входной сигнал, который еще не может изменить состояние выходных сигналов. Помехозащищенность определяется разницей между напряжением U IH и порогом срабатывания (это поме­хо­за­щищенность единичного уровня), а также разницей между порогом срабатывания и U IL (это помехозащищенность нулевого уровня).

    Коэффициент разветвления - число входов, которое может быть подключено к данному выходу без нарушения работы. Определяется отношением выходного тока к входному. Стандартная величина коэффициента разветвления при использовании микросхем одного типа (одной серии) равна 10.

    Нагрузочная способность - параметр выхода, характеризующий величину выходного тока, которую может выдать в нагрузку данный выход без нарушения работы. Чаще всего нагрузочная способность прямо связана с коэффициентом разветвления.

Таким образом, большинство справочных параметров микросхемы относятся к третьему уровню представления (к модели с учетом электрических эффектов), поэтому в большинстве случаев (до 80%) знать их точные значения наизусть не обязательно. Достаточно помнить примерные типовые значения параметров для данной серии микросхем.

Входы и выходы цифровых микросхем

Характеристики и параметры входов и выходов цифровых микросхем определяются прежде всего технологией и схемотехникой их внутреннего строения. Но для разработчика цифровых устройств любая микросхема представляет собой всего лишь "черный ящик", внутренности которого знать не обязательно. Ему важно только четко представлять себе, как поведет себя та или иная микросхема в данном конкретном включении, будет ли она правильно выполнять требуемую от нее функцию.

Наибольшее распространение получили две технологии цифровых микросхем:

    ТТЛ (TTL) и ТТЛШ (TTLS) - биполярная транзисторно-транзисторная логика и ТТЛ с диодами Шоттки;

    КМОП (CMOS) - комплементарные транзисторы со структурой "металл–окисел–полупроводник".

Рис. 1.7. Входной и выходной каскады микросхем ТТЛШ

Рис. 1.8. Входной и выходной каскады микросхем КМОП

Различаются они типами используемых транзисторов и схемотехническими решениями внутренних каскадов микросхем. Отметим также, что микросхемы КМОП потребляют значительно меньший ток от источника питания, чем такие же микросхемы ТТЛ (или ТТЛШ) - правда, только в статическом режиме или на небольших рабочих частотах. На рис. 1.7 и 1.8 показаны примеры схем входных и выходных каскадов микросхем, выполненных по этим технологиям. Понятно, что точный учет всех эффектов в этих схемах, включающих в себя множество транзисторов, диодов и резисторов, крайне сложен, но обычно он просто не нужен разработчику цифровых схем.

Рассмотрим сначала входы микросхем.

На первом уровне представления (логическая модель) и на втором уровне представления (модель с временными задержками) о входах микросхем вообще ничего знать не нужно. Вход рассматривается как бесконечно большое сопротивление, никак не влияющее на подключенные к нему выходы. Правда, количество входов, подключенных к одному выходу, влияет на задержку распространения сигнала, но, как правило, незначительно, поэтому это влияние учитывается редко.

Даже на третьем уровне представления (электрическая модель) в большинстве случаев не нужно знать о внутреннем строении микросхемы, о схемотехнике входов. Достаточно считать, что при подаче на вход сигнала логического нуля из этого входа вытекает ток, не превышающий I IL , а при подаче сигнала логической единицы в этот вход втекает ток, не превышающий I IH . А для правильной логики работы микросхемы достаточно, чтобы уровень напряжения входного сигнала логического нуля был меньше U IL , а уровень напряжения входного сигнала логической единицы был больше U IH .

Особым случаем является ситуация, когда какой-нибудь вход не подключен ни к одному из выходов - ни к общему проводу, ни к шине питания (так называемый висящий вход ). Иногда возможности микросхемы используются не полностью и на некоторые входы не подается сигналов. Однако при этом микросхема может не работать или работать нестабильно, так как ее правильное включение подразумевает наличие на всех входах логических уровней, пусть даже и неизменных. Поэтому рекомендуется подключать неиспользуемые входы к напряжению питания микросхемы U CC или к общему проводу (к земле) в зависимости от того, какой логический уровень необходим на этом входе. Но для некоторых серий микросхем, выполненных по технологии ТТЛ (например, К155 или КР531), неиспользуемые входы надо подключать к напряжению питания не напрямую, а только через резистор величиной около 1 кОм (достаточно одного резистора на 20 входов).

На неподключенных входах микросхем ТТЛ формируется напряжение около 1,5–1,6 В, которое иногда называют висячим потенциалом. Обычно этот уровень воспринимается микросхемой как сигнал логической единицы, но рассчитывать на это не стоит. Потенциал, образующийся на неподключенных входах микросхем КМОП, может восприниматься микросхемой и как логический нуль, и как логическая единица. В любом случае все входы надо куда-то подключать. Неподключенными допускается оставлять только те входы (ТТЛ, а не КМОП), состояние которых в данном включении микросхемы не имеет значения.

Выходы микросхем принципиально отличаются от входов тем, что учет их особенностей необходим даже на первом и втором уровнях представления.

Существуют три разновидности выходных каскадов, существенно различающиеся как по своим характеристикам, так и по областям применения:

    стандартный выход или выход с двумя состояниями (обозначается 2С, 2S или, реже, ТТЛ, TTL);

    выход с открытым коллектором (обозначается ОК, OC);

    выход с тремя состояниями или (что то же самое) с возможностью отключения (обозначается 3С, 3S).

Стандартный выход 2С имеет всего два состояния: логический нуль и логическая единица, причем оба они активны, то есть выходные токи в обоих этих состояниях (I OL и I OH) могут достигать заметных величин. На первом и втором уровнях представления такой выход можно считать состоящим из двух выключателей, которые замыкаются по очереди (рис. 1.9) , причем замкнутому верхнему выключателю соответствует логическая единица на выходе, а замкнутому нижнему - логический нуль.

Рис. 1.9. Три типа выходов цифровых микросхем

Выход с открытым коллектором ОК тоже имеет два возможных состояния, но только одно из них (состояние логического нуля) активно, то есть обеспечивает большой втекающий ток I OL . Второе состояние сводится, по сути, к тому, что выход полностью отключается от присоединенных к нему входов. Это состояние может использоваться в качестве логической единицы, но для этого между выходом ОК и напряжением питания необходимо подключить нагрузочный резистор R (так называемый pull-up) величиной порядка сотен Ом. На первом и втором уровнях представления такой выход можно считать состоящим из одного выключателя (рис. 1.9) , замкнутому состоянию которого соответствует сигнал логического нуля, а разомкнутому - отключенное, пассивное состояние. Правда, от величины резистора R зависит время переключения выхода из нуля в единицу, что влияет на задержку t LH , но при обычно используемых номиналах резисторов это не слишком важно.

Digital technology ) основаны на представлении сигналов дискретными полосами аналоговых уровней , а не в виде непрерывного спектра. Все уровни в пределах полосы представляют собой одинаковое состояние сигнала.

Цифровая технология работает, в отличие от аналоговой, с дискретными, а не непрерывными сигналами. Кроме того, сигналы имеют небольшой набор значений, как правило, два, но в реальной жизни системы, особенно учётные системы хранения данных, на основе трёх значений. Обычно это 0, 1, NULL которые в булевской алгебре имеют значения «Ложь», «Истина» и в присутствии NULL «отсутствие результата» соответственно.

Цифровые схемы состоят в основном из логических элементов , таких как AND, OR, NOT и др., а также могут быть связаны между собой счётчиками и триггерами .

Цифровые технологии главным образом используются в вычислительной цифровой электронике, прежде всего компьютерах, в различных областях электротехники, таких как игровые автоматы, робототехника, автоматизация, измерительные приборы, радио- и телекоммуникационные устройства и многих других цифровых устройствах .

Происхождение названия

Английское слово digital , означающее «цифровой», в свою очередь, происходит от латинского Digitus , то есть «палец».

Поскольку человечеством в течение длительного времени в процессе подсчёта малых значений использовались пальцы, именно десятичная система счисления стала основной, в том числе и в индо-арабской нумерации. Обычно пальцами можно рассчитывать значения только целых чисел. Из-за этого слово «цифровой» также используется для обозначения любого объекта, который работает с дискретными значениями.

Преимущества

Цифровой сигнал с двумя логическими уровнями, подвергшийся зашумлению при передаче

Одно из преимуществ цифровых схем по сравнению с аналоговыми заключается в том, что во-первых сигналы могут быть переданы без искажений. Например, непрерывный звуковой сигнал, передающийся в виде последовательности 1 и 0, может быть восстановлен без ошибок при условии, что шума при передаче было не достаточно, чтобы предотвратить идентификацию 1 и 0. Час музыки может быть сохранён на компакт-диске с использованием около 6 млрд двоичных разрядов.

Цифровыми системами с компьютерным управлением можно управлять с помощью программного обеспечения, добавляя новые функции без замены аппаратных средств. Часто это может быть сделано без участия завода-изготовителя путём простого обновления программного продукта. Подобная функция позволяет быстро адаптироваться к изменяющимся требованиям. Кроме того, возможно применение сложных алгоритмов, которые в аналоговых системах невозможны или же осуществимы, но только с очень высокими расходами.

Хранение информации в цифровых системах проще, чем в аналоговых. Помехоустойчивость цифровых систем позволяет хранить и извлекать данные без повреждения. В аналоговой системе старение и износ может ухудшить записанную информацию. В цифровой же, до тех пор, пока общие помехи не превышают определённого уровня, информация может быть восстановлена совершенно точно.

Недостатки

В некоторых случаях цифровые схемы используют больше энергии, чем аналоговые для выполнения одной и той же задачи, выделяя больше тепла, что повышает сложность схем, например, путём добавления кулера . Это может ограничить их использование в портативных устройствах, питающихся от батареек.

Например, сотовые телефоны часто используют маломощный аналоговый интерфейс для усиления и настройки радио-сигналов от базовой станции. Тем не менее, базовая станция может использовать энергоёмкую, но очень гибкую программно-определяемую радиосистему . Такие базовые станции можно легко перепрограммировать для обработки сигналов, используемых в новых стандартах сотовой связи.

Возможна также потеря информации при преобразовании аналогового сигнала в цифровой. Математически это явление может быть описано, как ошибка округления .

В некоторых системах при потере или порче одного фрагмента цифровых данных может полностью измениться смысл больших блоков данных.

Примечания

Литература

  • Манфред Шпитцер. Антимозг: цифровые технологии и мозг. - АСТ, 2015. -

Информационные системы вошли во все сферы жизни. Развитие цифровых технологий открывает огромный спектр возможностей. Прогресс во всех и промышленности идет с огромной скоростью, не прекращая удивлять и восхищать.

Суть феномена

Цифровые технологии - это основанная на методах кодировки и передачи информации дискретная система, позволяющая совершать множество разноплановых задач за кратчайшие промежутки времени. Именно быстродействие и универсальность этой схемы сделали IT-технологии столь востребованными.

Бизнес и производство, повседневные потребности и величайшие открытия - во всех сферах применяются новые методики.

Использование в быту

Количество цифровых устройств в каждом доме постоянно увеличивается. Компьютеры, смартфоны, бытовая электроника - трудно представить современную действительность без подобных гаджетов. Цифровые технологии - это уникальное явление, которое за последние десятилетия полностью поменяло образ жизни каждого жителя планеты.

Исследователи утверждают, что внедрение технологических новинок с каждым годом будет проходить все более быстрыми темпами. На повсеместное распространение электричества в ХХ столетии ушло 30 лет, а планшетные компьютеры вошли в обиход за 3-4 года.

Общество становится дружнее. Огромные потоки информации, которые каждый желающий может получать из сети Интернет, делают образование более доступным. Реализовать свой творческий потенциал или просто заработать, не выходя из дома - раньше о таких возможностях можно было только мечтать. Сегодня это реальность.

Спасение жизней

Внедрение новых цифровых технологий в медицину позволяет спасать миллионы жизней в год. Современные разработки помогают создавать высокотехнологичное оборудование для диагностики, анализа и лечения самых различных болезней. Клинические исследования, которые можно провести с использованием уникальных эмпирических методов, открывают широкие возможности для производства неизвестных ранее лекарств.

Совершенствование методов фармакологии, терапии и хирургии способствует снижению уровня смертности и повышению уровня жизни.

Виртуальные методы общения позволяют в кратчайшие сроки диагностировать болезни дистанционно. 3D-принтеры, дающие возможность производить протезы - за такими разработками будущее.

Прорыв в промышленности

Увеличение объемов производства с ростом населения на планете становится приоритетной задачей во многих отраслях деятельности. Цифровые технологии - это способ ускорить любые промышленные процессы, используя сверхточные методы измерения.

Внедрение информационных систем в методы взаимодействия различных частей предприятия дает возможность повысить эффективность индустриальной организации. Создавая все больше продукции в кратчайшие сроки, промышленники имеют возможность реализовывать изделия по всему миру.

Расширяя границы возможностей, современные цифровые технологии помогают наращивать темпы развития экономики.

Снижение потребностей в человеческих ресурсах на производстве позволяет освобождать созидательные резервы общества, направляя их на развитие духовности и культуры.

Продвижение бизнеса

Бизнес-корпорации находятся на разной стадии внедрения IT-методов управления и коммуникаций. Однако давно понятно, что именно цифровые технологии - это самое правильное направление для скорейшего развития предпринимательства.

Автоматизация рабочих процессов внутри компаний позволяет вести финансовый учет, основываясь на реальных статистических данных. Использование опыта оптимизации управления позволяет диверсифицировать производство и принимать более рациональные решения в процессе деятельности.

Бизнес-модели претерпевают существенные видоизменения. Теперь любая крупная организация имеет возможность расширять сферу своей деятельности, используя глобальную сеть. Быстрый доступ к любой географической точке делает управление бизнесом максимально эффективным.

Инвестиции в цифровые помогают получить объективную оценку реальных рынков сбыта и потребностей клиентов.

Мир меняется

Многообещающие разработки ведущих мировых специалистов уже готовы завоевать весь мир. Дополненная реальность - это уже не просто теоретический проект. Виртуальные зеркала уже устанавливают в примерочных дорогих магазинов одежды. Подобные технологии тестируют в автомобилях и на улицах крупных городов.

Виртуальная реальность давно перекочевала из фантастических фильмов в индустрию развлечений. Специальные шлемы и костюмы позволяют ощутить стопроцентное взаимодействие с виртуальным миром, гарантируя полное погружение в другую действительность.

Интернет становится не только способом обмена информации. Цифровые технологии позволяют создавать своеобразную копию физического мира. Каждый объект, подключенный к глобальной сети, находится под полным контролем владельца. может сообщить о забытом утюге, стиральная машина просигнализирует о возможной поломке механизма.

Развитие IT-коммуникаций предполагает создание взаимодействия не только между человеком и объектом, но и между двумя механизмами. Обмен информацией между разными элементами конвейерной линии, простые методы технического обслуживания, управление логистикой - вот неполный перечень удивительных преимуществ, которые могут дать цифровые технологии.



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные