Передача электроэнергии по одному проводу своими руками. Однопроводный ток - реальность, снижающая затраты на передачу энергии в сотни раз! Влияние нахождения различных предметов в зоне работы генератора

Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только-только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы. И лампа загорелась!
Тогда он взял пластмассовую расческу, натер ее и стал махать возле лампы. И лампа снова зажглась. А ведь в институте учили другому: нужно либо подвести к лампе два конца, анод и катод, либо поместить газоразрядную лампу в переменное электромагнитное поле достаточно высокой частоты.
Авраменко предположил, что статические заряды каким-то образом приводятся в движение, и образуется то самое переменное электромагнитное поле, которое и зажигает газ в лампе. Он стал проводить многочисленные эксперименты со статическим электричеством (которое на сегодняшний день практически не используется).
Статический заряд почти невесом, чтобы получить его и переместить в пространстве, тяжелой механической работы производить не надо, мощные и металлоемкие двигатели и генераторы могут оказаться ненужными. Изобретатель старался получить свободный заряд, придать ему направленное перемещение, заставить действовать так же, как и обычный ток в проводах. Для этого он пытался преобразовать обычный ток из электросети в ток смещения свободных статических зарядов (в так называемые реактивные токи). Первичным источником служили обычные звуковые генераторы, используемые в радиотехнике. Из литературы он узнал о трансформаторе Теслы (этот ученый также пытался передавать на расстояние электрическую мощность с помощью реактивных токов) и использовал этот опыт. Трансформатор Авраменко
Дело пошло. Сначала появились малые токи, 2-3 Вт, потом - большей мощности. В результате Станиславу Викторовичу удалось сделать то, что до этого не получалось ни у кого: создать систему передачи тока свободных статических зарядов по одному проводу.
На выходе созданного Авраменко трансформатора мы имеем обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце. В трансформаторе Теслы второй конец был заземлен, небольшой потенциал на нем все-таки был, нулевого добиться ему не удалось. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.
В научных журналах (например, «Изобретатель и рационализатор»), заинтригованных уникальным явлением, пытались объяснить природу этого «однопроводного электричества». Рассказывалось и о трансформаторах без сердечников, подобных трансформаторам Теслы, о «вилке Авраменко» -включенных особым образом диодах. С их помощью удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля - Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача - лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет.
В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Преимущества однопроводного электричества

Полного теоретического объяснения работы однопроводной системы нет и сегодня. Вопросы остаются, светила электротехники ответа на них не находят. И тем не менее возможность передачи энергии по одному проводу Авраменко доказал экспериментально. Это было около десяти лет назад.
За прошедшее с этого момента время Авраменко удалось установить уникальные свойства однопроводной сети.
Прежде всего выявились огромные преимущества однопроводной передачи электроэнергии на расстояние. При передаче ее обычным способом 10-15% энергии теряется на нагрев проводов (джоулево тепло). Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2-4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6-7 А/мм2, то по однопроводниковой она достигает 428 А/мм2 при мощности в 10 кВт. Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача - указывать направление тока. Что это значит? А это значит -происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими.

Электрический ток… по трубопроводам

Станислав Викторович стал приглашать на демонстрацию опытов различных специалистов, руководителей Минэнерго, ученых из ФИАН, МИФИ и пр. Ни расчетам, ни своим глазам никто не верил. Первым человеком, поверившим Авраменко, стал директор Всероссийского НИИ электрификации сельского хозяйства (ВНИИЭСХ), академик РАСХН, профессор, д. т. н. Д.С. Стребков. Он первый понял, что все демонстрируемое изобретателем вполне подчиняется законам физики и электротехники.
Дмитрий Семенович пригласил Авраменко к себе в институт, создал там соответствующую лабораторию, выделил оборудование, выбил , и опыты стали производиться на гораздо более серьезной основе. Если раньше у Авраменко была лишь небольшая десятиваттная установка, то во ВНИИЭСХе изготовили опытную установку мощностью в 100 Вт, позволившую провести ряд важных экспериментов.
Например, было доказано, что однопроводное электричество можно передавать не только по медному проводу. Как происходит такой эксперимент? Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы). В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.
Что этот опыт доказывает? А то, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например - по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток - по металлической оплетке кабеля) и т.п. (патент РФ № 2172546). А раз так - то можно изобрести массу машин и устройств, использующих это явление.

Не воруйте провода, они… стальные!

Авраменко совместно со Стребковым и к.т.н. А.И. Некрасовым, руководящим лабораторией ВНИИЭСХа, разработали дождевальную машину, идущую вдоль арыка или лотка с водой и получающую из них не только воду, но и энергию для своей работы. Еще одна область применения (патент № 2136515) - оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (причем при этом по рельсу ток не идет!), а также - оборудование для питания мобильных электроагрегатов, вроде тракторов, аэростатов, вертолетов по сверхтонкому и легкому кабелю (патент № 2158206). Мало того, реактивные токи установки Авраменко можно передавать по лазерному лучу вообще без проводов (патент № 2143735), а за пределами атмосферы - и по электронному лучу (патент № 2163376).
Но корифеи все не верили, специальные журналы в публикациях отказывали: «Большие мощности все равно невозможно передать на расстояние. Сделайте киловаттную установку».
Ну, так ведь и сделали! Тут призадумались уже и специалисты. Первым всерьез заинтересовался «Газпром» - организация, далеко не бедная и на перспективные разработки денег не жалеющая. Вдоль газопроводов сейчас обязательно устраивают линии электропередачи для катодной защиты, питания перекачивающих насосов и для других эксплуатационных служб. Линии эти стоят дорого, провода из цветных металлов воруют. А при однопроводной передаче энергии можно протянуть стальной провод или даже пустить ток по самой трубе.

Воробей не сядет

«Газпром» спонсировал изготовление еще более мощной установки, на 20 кВт. Ее сделали с запасом: Д. С. Стребков утверждает, что она выдаст и 100 кВт. Установленный в начале этой линии высокочастотный трансформатор генерирует мощные электростатические заряды, которые концентрируются вдоль линии к резонансному контуру понижающего трансформатора Теслы и через выпрямитель отводятся к нагрузке, то есть к потребителям. Передает установка энергию по проводку толщиной всего в 80-100 мкм: его можно увидеть, только подойдя вплотную. Он отчаянно вибрирует, когда установка включена, иной раз даже отрывается от изолятора (разумеется, в реальных условиях столь тонкий провод никто ставить не собирается, он разорвется, даже если на него сядет воробей). И тем не менее по этому волоску течет ток, который питает 24 киловаттных лампы, мощный электромотор и пр.
Такая система имеет в сотни раз лучшие электрические параметры, чем традиционные двух-трехпроводные. При этом в конструкции установки применены стандартные, серийно выпускаемые отечественной промышленностью узлы: например, преобразователь, применяемый при термообработке труб, конденсаторы и пр. Между тем НПО «Сапфир» по заказу ВНИИЭСХа разрабатывает в настоящее время во много раз меньшие преобразователи на тиристорах, так что можно ожидать, сверх всего прочего, что установка станет гораздо более компактной.

Электротрактор без барабана и коагулятор в кармане

Применение принципиально новой системы подачи электроэнергии позволит значительно упростить и удешевить строительство троллейбусных и трамвайных линий или, допустим, даст возможность устанавливать на автомобилях электропривод с «антенной», чтобы водители, подъехав к устроенным повсеместно однопроводным линиям, подсоединялись к ним и ехали куда угодно, отключив ДВС и не загрязняя атмосферу.
Кроме того, можно было бы вернуться и к электротракторам, работающим от кабеля. От них в свое время отказались из-за того, что барабан кабеля, устанавливаемый на тракторе, весил 3 тонны. Теперь же его вес составит не более 30 кг. Да и без барабана можно обойтись.
Можно создать аэростатное телевидение, установив ретрансляторы километрах в десяти над землей. Или устроить аэростатную же систему мониторинга огромных площадей лесов или полей. Сейчас только вес кабелей мешает этому.
Но и это еще не все. Энергию по лазерным и электронным лучам можно передавать даже на спутники и ракеты! Но это пока только .
Однако вот вам настоящее: коагуляторы крови, изготовленные с помощью однопроводной системы. Эти приборы применяют для остановки крови при ранах и операциях, они как бы сваривают крохотной дугой электроплазмы края разорванных сосудов. Существующие сегодня в мире коагуляторы мощностью 8 Вт представляют собой громоздкую тумбу, стационарную или на колесах, весом около сотни килограммов, охлаждаемую водой из водопровода и потребляющую более киловатта энергии. Точно такой же мощности и еще более эффективного действия коагулятор, изготавливаемый во ВНИИЭСХе, питается от обычных аккумуляторных батареек, весит несколько сот граммов, помещается в «дипломате» или бардачке автомобиля, так что может работать и в полевых условиях, и дома. Тем более что его стоимость сегодня составит примерно $1000 (против 45-60 тыс. $ для громоздких зарубежных аналогов). Он может использоваться и уже используется не только в клиниках, но и в салонах красоты, для уничтожения бородавок, папиллом, татуировок и пр.
Сегодня работами Авраменко и его коллег весьма пристально интересуются иностранцы. Изобретения были отмечены золотой медалью Салона инноваций в Брюсселе и золотой медалью Николы Теслы, выдаваемой за выдающиеся работы в области электротехники. Англичане и японцы оплатили международное патентование, причем американцы выдали патент, в котором работы российских ученых названы «букетом открытий». С Индией ведутся переговоры о поставке демонстрационной установки в 25 кВт.
Но увы, увы и еще раз увы! О широком, массовом применении однопроводного тока в России пока приходится только мечтать.

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу.

Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что у нас в стране работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.


Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рисунке показана одна из схем Авраменко.

Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р.

Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с , в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно.

Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами!

Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л.

Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10 - 20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.


На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2—5 МОм и R2=2—100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности.

Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину.

Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины.

По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным.

Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года.

В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники.

Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м...

Николай ЗАЕВ

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.


Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология


Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.


Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.
21 января 2010 в 20:04

Передача электроэнергии по одножильному проводу

  • Энергия и элементы питания

Теперь подробнее рассмотрим детали схемы. На самом деле в это схеме есть два нюанса.

Первый – это повышающий трансформатор, обратите внимание на схему подключения. Один конец вторичной обмотки подсоединяется к одному из выводов первичной, и, желательно, заземляется. Это делается для обеспечения безопасности, а так же для повышения эффективности вторичной обмотки. Далее, к первичной обмотке параллельно подсоединен конденсатор, образовывая параллельный колебательный контур. Емкость конденсатора рассчитывается по известным формулам, в зависимости от индуктивности первичной обмотки и используемой частоты. Это делается для повышения силы тока в первичной обмотке, и, соответственно, для усиления эффекта. С подбором емкости конденсатора, возможно, возникнет проблема, так как индуктивность первичной обмотки в процессе ее работы меньше, чем в отключенном состоянии, и эта разница зависит от нагрузки на вторичной обмотке. Я решил этот вопрос просто: рассчитал конденсатор на индуктивность меньшую на 10%-15% от измеренной величины, при заданной частоте. И даже после этого пришлось немного регулировать частоту генератора, для настройки максимального резонанса.

Нюанс второй – настроить резонанс во вторичной цепи. Индуктивность вторичной цепи складывается из индуктивности вторичной обмотки повышающего трансформатора и первичной обмотки понижающего трансформатора. Индуктивность первичной обмотки понижающего трансформатора так же, будет немного меньше измеренной, так как зависит от нагрузки на вторичной обмотке. Далее, необходимо подобрать емкость проводящей изолированной пластины. Делается это просто, измеряем площадь пластины и по формулам рассчитываем емкость, для данной частоты и индуктивности. Пластину нужно разместить на расстоянии от окружающих предметов, в противном случае ее емкость будет больше расчетной. Чем выше частота и больше индуктивность цепи, тем меньше емкость требуется, а значит и площадь пластины. При достаточно высокой частоте может хватить и собственной емкости цепи, в таком случае пластина не нужна. Мой тестовый стенд позволял работать мотору мощность 10Вт на полную мощность, зажигать лампы накаливания, и, конечно же, перегоревшие лампы дневного света. На мой взгляд, ОПЭ имеет два основных плюса. Первый – расходуется меньше материалов на проводники. Второй – за счет повышенной частоты и высокого напряжения по проводнику проходит, относительно не большой ток, провод почти не греется, что благоприятно сказывается на сопротивлении. Изучив данный материал, очень надеюсь, что у вас возник вопрос: «А что, в таком случае, мешает использовать Землю, в качестве проводника?». Отвечу – ничего!


А можно и на много проще:

На ролике представлена очень примитивная схема, с помощью которой демострируется передача электроэнергии по одному проводу.
На самом деле, передавать электроэнергию посредством одного провода на данный момент не имеет практического смысла, на мой взгляд. Эта информация размещена здесь лишь для того, что бы показать возможность передачи энергии и сигналов через Землю.

P.S. Статья написана Ромой, который давно хотел попасть на хабр, но теперь, думаю, у него это получится который попал на хабр благодаря инвайту от . Пока я не знаю хабраимени Романа, но как только узнаю - обязательно размещу его здесь.

P.S. 2 Это второй человек, который участвует в моем эксперименте по «продаже» инвайтов. Суть эксперимента заключается в том, что я продаю инвайт за статью. Я считаю что люди, которые пишут статьи достойны стать хабрапользователями. Не отдавать инвайты просто так я решил после двух приглашенных людей, которые спустя уже год пребывания на хабре не сделали ничего. Я думаю, вы меня поймете. Спасибо.

P.S. 3 Так как автор не до конца смог донести идею - расскажу я. В данном случае работает емкостная энергия. Здесь мы получаем колебательный контур за счет емкости и болшой частоты. Индуктируется ЭДС во вторичной обмотке трансформатора, за счет этого мы и получаем выход энергии с другой стороны провода.



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные