Векторное управление без обратной связи. Технические отличия векторных и скалярных преобразователей. Прямое управление моментом

Использование частотного преобразователя направлено на решение важных задач. Они заключаются в осуществлении управления моментом и скоростью электродвигателя. Данные требования указывают на необходимость ограничивать ток двигателя, а также момент значениями, которые являются допустимыми. Это выполняется в процессах пуска, торможения, а также при изменениях нагрузки.

Делать это требуется для того, чтобы ограничивать динамические ударные нагрузки в механизме преобразователя частоты . При этом отмечаются перегрузки при работе и потребность в регулировке момента двигателя, которая выполняется непрерывно. Также выполнение таких действий требуется, когда необходимо точно поддержать усилия на мехнизме, который является рабочим. Примером в данном случае становятся приводы, используемые в станках для обработки металла.

Сущестуют различные методы частотного управления, которые позволяют решить различные задачи при регулировке скорости и измененения момента, среди которых- два основных метода - векторный и скалярный . Каждый из них имеет свои характерные особенности, на которых следует остановиться более подробно.

Первый метод управления - скалярный . Особенность скалярного управления заключается в его распространенности, а область применения связана с приводами насосов и вентиляторов. Кроме этого, частотные преобразователи со скалярным методом управления используют там, где важно поддерживать определенный технологический параметр. Им может быть, например, давление в трубопроводе. Изменение амплитуды, а также частоты питающего напряжения выступает в качестве основного принципа, на котором основывается данный метод. При этом используется закон U/f. Наибольший диапазон для регулирования скорости составляет 1:10.
Дополнительные особенности скалярного метода заключаются в свойственной ему легкости при реализации. Существует также и недостаток, который заключается в том, что нет возможности точно регулировать скорость вращения вала. Еще одна особенность - на валу двигателя частотный преобразователь со скалярным управлением не дает возможности контролировать момент.

Второй метод, используемый в частотных преобразователях - векторный . Это такой метод управления синхронными и асинхронными двигателями, при котором формируются не только гармонические токи (напряжения) фаз, но и обеспечивается управление магнитным потоком ротора,а именно, моментом на валу электродвигателя. Векторное управление применяется в случае, когда в процессе эксплуатации нагрузка может меняться на одной и той же частоте, т.е. нет четкой зависимости между моментом нагрузки и скоростью вращения, а также в случаях, когда необходимо получить расширенный диапазон регулирования частоты при номинальных моментах.

Системы векторного управления разделяются на два класса - это бездатчиковые и с обратной связью. Область применения позволяет определить применение определенного метода. Применение бездатчиковых систем возможно, когда скорость изменяется не больше чем 1:100, а точность поддержания составляет не больше чем ±0,5 %. При аналогичных показателях, составляющих 1:1000 и ±0,01 % соответственно принято использовать системы с обратной связью.

Преимуществами векторного метода управления является быстрота реакции относительно изменения нагрузки, а в области малых частот вращение двигателя характеризуется плавностью, отсутствием рывков. Внимание привлекает обеспечение на валу при условии нулевой скорости номинального момента, если имеется датчик скорости. Регулировка скорости выполняется при достижении высокой точности. Все эти преимущества становятся важными на практике.

ВЫВОДЫ:

1. Если в скалярных преобразователях частоты объектом контроля и управления является только магнитное поле статора, то в векторных моделях объектом контроля и управления является и магнитное поле статора, и ротора, а точнее - их взаимодействие с целью оптимизации момента вращения на различных скоростях. Что касается методов контроля и управления, то когда применяется скалярный метод управления- используется выходная частота и ток частотного преобразователя, а в случае с векторным управлением - выходная частота, ток и его фаза.

1.5.1 Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости. Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты. Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора. Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью. Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

.

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя М макс к моменту сопротивления на валу М с . То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Основная особенность при регулировании АД заключается в том, что необходимо изменять напряжение U на статоре как в функции момента статических M с сопротивлений, так и в соответствии с изменением частоты.

Таким образом, при скалярном методе управления зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя. При этом для постоянного момента нагрузки всегда поддерживается отношение U /f = cоnst , и, по сути, обеспечивается постоянство максимального момента двигателя. Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня на­пряжения питания.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график для U от f для любого типа нагруз­ки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно - регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть век­тор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением поло­жения ротора путем вычислений по другим параметрам двигателя. В качест­ве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно - регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

В синхронном частотно-регулируемом приводе применяются те же ме­тоды управления, что и в асинхронном.

Управляющая часть ПЧ выполняется на цифровых микропроцессорах и обеспе­чивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита). При этом на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды ( и вых = vаr , ƒ вых = vаr ).

Механические характеристики асинхронного двигателя при частотном регулировании скорости для различных объектов управления имеют вид представленный на рисунке 1.2.

Итак, при объектах управления с постоянным моментом статической нагрузки M c = Const , напряжение источника питания должно изменяться пропорционально его частоте U / f = const в объектах управления, требующих регулирования скорости при постоянстве мощности P c = Const закон управления, будет: U / f = const , при вентиляторной нагрузке закон управления соответствует U / f 2 = const . По этим соображениям наибольшее распространение метод регулирования получил для механизмов M с = Const , хотя в принципе использование функциональных преобразователей позволяет реализовать любой из этих законов.

До последнего времени системы электроприводов прямоточных волочильных станов строились исключительно на базе двигателей постоянного тока. Причиной этому являлось отсутствие надежных преобразователей частоты. При этом системы тиристорный преобразователь двигатель (ТП-Д) имеют такие недостатки, как:

Ограничение темпа нарастания тока якоря, повышенный момент инерции электропривода, приводящие к снижению быстродействия систем автоматического регулирования;

Высокие массогабаритные показатели;

Трудоемкость в обслуживании.

Перечисленные недостатки обусловлены наличием коллектора и соответственно процессов коммутации и могут быть исключены при построении системы электропривода на основе асинхронного короткозамкнутого двигателя.

В настоящее время имеется достаточный опыт промышленного применения электроприводов по системе ПЧ-АД в диапазоне мощностей 35...100 кВт.

Таким образом, система ПЧ-АД имеющая диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента и точность по моменту – единицы процентов может обеспечивать необходимую синхронизацию скоростей приводных электродвигателей в прямоточном волочильном стане с целью безобрывного волочения и заданной величиной противонатяжения проволоки.

1.5.2 Насосные станции с частотными электроприводами. В насосной станции №1 в г. Талдыкорган обычный короткозамкнутый асинхронный электродвигатель насоса мощностью 110 кВт/ч включен через преобразователь ПЧТ, разработанный в НИИ ХЭМЗ. Система управления электроприводом построена аналогично ранее описанным, за исключением того, что в качестве преобразователя уровня в системе использован ультразвуковой уровнемер ЭХО3. Применение частотного электропривода в этой установке уменьшает потребление электроэнергии на 60 тыс. кВт - ч в год, Т.о. примерно на 5 %.

В насосных станциях г. Талдыкорган используются также частотные преобразователи типа ПЧР-2 и производства финской фирмы Stromberg, на основе которых созданы и работают свыше 10 систем автоматического регулирования режима работы насосных станций с агрегатами мощностью от 75 до 160 кВт.

Частотные преобразователи фирмы Stromberg - высоконадежные и достаточно компактные средства регулирования насосных агрегатов. Для обеспечения равномерного использования насосных агрегатов предусматривается устройство, с помощью которого они могут поочередно подключаться к одному преобразователю.

1.5.3 Многоскоростные электродвигатели в насосных установках. Циркуляционные насосные станции некоторых талдыкорганских ТЭЦ укомплектованы вертикальными насосными агрегатами с двухскоростными двигателями марки ДВДА215/64-16-20К. Из семи насосов каждой станции два приводятся во вращение этими электродвигателями. Номинальная мощность двигателей 1400 кВт, частота вращения 375 и 300 об/мин. Наличие таких насосных агрегатов позволяет лучше приспосабливать режим работы насосной установки к режиму работы теплосети. Применяются двухскоростные электродвигатели и в водопроводных насосных установках.

Для осуществления возможности регулирования момента и скорости в современных электроприводах используются следующие методы частотного управления, такие как:

  • Векторное;
  • Скалярное.

Наибольшее распространение получили асинхронные электроприводы со скалярным управлением. Его используют в приводах компрессоров, вентиляторов, насосов и прочих механизмов в которых необходимо удерживать на определенном уровне или скорость вращения вала электродвигателя (применяется датчик скорости), либо какого-то технологического параметра (к примеру, давление в трубопроводе, с применением соответствующего датчика).

Принцип действия скалярного управления асинхронным двигателем - амплитуда и частота питающего напряжения изменяются по закону U/f^n = const, где n>=1. То, как будет выглядеть данная зависимость в конкретном случае, зависит от требований предъявляемых нагрузкой электроприводу. Как правило, в качестве независимого воздействия выступает частота, а напряжение при определенной частоте определяется видом механической характеристики, а также значениями критического и пускового моментов. Благодаря скалярному управлению обеспечивается постоянная перегрузочная способность асинхронного двигателя, независящая от частоты напряжения, и все же при довольно низких частотах может произойти значительное снижение момента, развиваемого двигателем. Максимальное значение диапазона скалярного управления, при котором возможно осуществление регулирования значения скорости вращения ротора электродвигателя, без потери момента сопротивления не превышает 1:10.

Скалярное управление асинхронным двигателем довольно просто реализуется, но все же имеются два значительных недостатка. Во-первых, если на валу не установлен датчик скорости, то невозможно осуществлять регулирование значения скорости вращения вала, поскольку она зависит от воздействующей на электропривод нагрузки. Установка датчика скорости с легкостью решает данную проблему, но еще одним значительным недостатком остается – отсутствие возможности регулирования значения момента на валу двигателя. Можно конечно установить датчик момента, но стоимость подобных датчиков, как правило, превышает стоимость самого электропривода. Причем, даже если установить датчик управления моментом, то процесс управления этим самым моментом окажется невероятно инерционным. Еще одно «но» - скалярное управление асинхронным двигателем характеризуется тем, что невозможно осуществление одновременного регулирования скорости и момента, поэтому приходится осуществлять регулирование той величины, которая в данный момент времени наиболее важна в силу условий технологического процесса.

Дабы устранить недостатки, которыми обладает скалярное управление двигателем, еще в 71-м году прошлого века компанией SIEMENS было предложено внедрение метода векторного управления двигателем. В первых электроприводах с векторным управлением использовались двигатели, в которых были встроены датчики потока, что значительно ограничивало область применения подобных приводов.

Система управления современных электроприводов содержит в себе математическую модель двигателя, позволяющую рассчитать скорость вращения и момент вала. Причем в качестве необходимых датчиков устанавливаются только датчики тока фаз статора двигателя. Специально разработанная структура системы управления обеспечивает независимость и практически безынерционность регулирования основных параметров – момент вала и скорость вращения вала.

К сегодняшнему дню сформировались следующие системы векторного управления асинхронным двигателем:

  • Бездатчиковые – на валу двигателя отсутствует датчик скорости,
  • Системы, имеющие обратную связь по скорости.

Применение методов векторного управления зависит от области применения электропривода. Если диапазон измерения значения скорости не превышает 1:100, а требования, предъявляемые к точности, колеблются в пределах ±1,5%, то используется бездатчиковая система управления. Если измерение скорости осуществляется в пределах достигающих значений 1: 10000 и больше, а уровень точности должен быть довольно высоким (±0,2% при частоте вращения ниже 1 Гц), или же необходимо позиционировать вал или осуществлять регулирование момента на валу при низких частотах вращения, то применяется система, имеющая обратную связь по скорости.

Преимущества векторного метода управления асинхронным двигателем:

  • Высокий уровень точности при регулировании скорости вращения вала, несмотря даже на возможное отсутствие датчика скорости,
  • Осуществление вращения двигателя на малых частотах происходит без рывков, плавно,
  • Если установлен датчик скорости, то можно достичь номинального значения момента на валу даже при нулевом значении скорости,
  • Быстрое реагирование на возможное изменение нагрузки – резкие скачки нагрузки практически не отражаются на скорости электропривода,
  • Высокий уровень КПД двигателя, за счет сниженных потерь из-за намагничивания и нагрева.

Несмотря на очевидные преимущества, метод векторного управления имеет и определенные недостатки – большая сложность вычислений, для работы необходимо знание параметров двигателя. Помимо всего прочего колебания значения скорости при постоянной нагрузке значительно больше, нежели при скалярном методе управления. Кстати, существуют такие сферы, где используются электроприводы исключительно со скалярным методом управления. К примеру, групповой электропривод, в котором один преобразователь подпитывает несколько двигателей.

Технические различия между векторными и скалярными частотными

преобразователями

Вопрос: На рынке представлены векторные и скалярные частотные преобразователи, причем

векторные ощутимо дороже. Каковы технические различия между ними?

Вопрос не так прост, чтобы ответить на него односложным образом. Сами по себе термины

"векторный" и "скалярный" являются неточными применительно к характеристике

частотных преобразователей. Поскольку речь идет по существу о параметре переменного

тока, то использование термина "скалярный" вообще недопустимо. Из курса элементарной

физики хорошо известно, что скалярная величина - это такая величина, каждое значение которой (в отличие от вектора) может быть выражено одним (действительным) числом,

вследствие чего совокупность значений скаляра можно изобразить на линейной шкале (скале - отсюда название). Длина, площадь, время, температура и т. д. - скалярные величины. Векторными величинами, или векторами, называют величины, имеющие и численное

значение, и направление. В этой связи разделение частотных преобразователей на скалярные

и векторные в принципе некорректно, и отражает стремление менеджеров торговых

компаний обосновать более высокие цены на один из типов преобразователей, якобы имеющий превосходство над другим.

Что касается технической стороны дела, она заключается в следующем.

Основным способом корректировки вращающего момента на валу электродвигателя является

изменение частоты и величины тока обмоток статора, что приводит к изменению силы его

вращающегося магнитного поля. Большинство частотных преобразователей устроены таким

образом, что дают возможность пользователю настроить характеристику выходных

электрических параметров под конкретный вид оборудования. Например, в зависимости от

величины момента инерции приводимого в движение оборудования можно придать

характеристике выходного тока преобразователя линейный, параболический или гиперболический вид.

Так, если необходимо стронуть с места тяжелую массу на приводимом в движение

транспортере, характеристике выходного тока следует придать гиперболический вид. Водяные насосы и вентиляторы желательно приводить в движение по параболической

кривой, что дает экономию электроэнергии. По этому алгоритму работают практически все

частотные преобразователи, называемые неправильным термином "скалярные", более точным названием которых было бы: "частотные преобразователи с предварительной настройкой частоты и величины выходного тока".

Другим эффективным средством повышения момента на валу электродвигателя является

использование 3-й гармоники выходного тока, вектор которой, как и кратных ей более

высоких гармоник, вращается в ту же сторону, что и вектор тока основной гармоники (50

Гц), т.е., имеет прямую последовательность. Другие же вращаются в обратном направлении

и имеют обратную последовательность. Общий ток нейтрали, вычисляемый по формуле:



управления параметрами выходного тока, а именно:

1) Преобразователи с предварительной настройкой параметров выходного тока .

Используются в большинстве общепромышленных приводов как с обратной связью по

контролю технологического параметра так и без нее, включая приводы насосов,

вентиляторов, конвейеров, транспортеров, экструдеров, в том числе одно- и многодвигательные системы.

2) Преобразователи с динамической настройкой параметров выходного тока . Используются в однодвигательных приводах высокоточного технологического

оборудования. Могут быть с обратной связью по контролю положения ротора двигателя и без нее. По точности и глубине регулирования скорости вращения несколько превосходят преобразователи первого типа, но значительно уступают сервоприводам.

Что касается проблемы в целом, следует иметь ввиду, что для решения конкретных задач в области управляемого привода применяются соответствующие электродвигатели со своими

системами управления - шаговые моторы с контроллерами, серводвигатели с контроллерами,

двигатели постоянного тока с контроллерами и, наконец, асинхронные и синхронные

электродвигатели с частотными преобразователями. Попытки создать универсальный привод

заведомо обречены на провал, поскольку конструктивные различия между приводами

слишком велики, а решаемые приводами задачи просто несопоставимы. Невозможно создать из асинхронного двигателя серводвигатель, а из синхронного шаговый, даже если встроить в него полсотни полюсов.

Что же делать? Все гениальное просто - достаточно правильно спроектировать привод с

учетом необходимого момента на валу в самом неблагоприятном диапазоне частот

вращения, а управление технологическим параметром поручить ПИД-регулятору, который имеется в большинстве скалярных преобразователей. автор статьи

большинстве современных т.н. "скалярных" преобразователей.

Главная идея векторного управления заключается в том, чтобы контролировать не только величину и частоту напряжения питания, но и фазу. Другими словами контролируется величина и угол пространственного вектора . Векторное управление в сравнении со обладает более высокой производительностью. Векторное управление избавляет практически от всех недостатков скалярного управления.

    Преимущества векторного управления:
  • высокая точность регулирования скорости;
  • плавный старт и плавное вращение двигателя во всем диапазоне частот;
  • быстрая реакция на изменение нагрузки: при изменении нагрузки практически не происходит изменения скорости;
  • увеличенный диапазон управления и точность регулирования;
  • снижаются потери на нагрев и намагничивание, повышается .
    К недостаткам векторного управления можно отнести:
  • необходимость задания параметров ;
  • большие колебания скорости при постоянной нагрузке;
  • большая вычислительная сложность.

Общая функциональная схема векторного управления

Общая блок-диаграмма высокопроизводительной системы управления скорости переменного тока показана на рисунке выше. Основой схемы являются контуры контроля магнитного потокосцепления и момента вместе с блоком оценки, который может быть реализован различными способами. При этом внешний контур управления скоростью в значительной степени унифицирован и генерирует управляющие сигналы для регуляторов момента М * и магнитного потокосцепления Ψ * (через блок управления потоком). Скорость двигателя может быть измерена датчиком (скорости / положения) или получена посредством оценщика, позволяющего реализовать .

Классификация методов векторного управления

Начиная с семидесятых годов двадцатого века было предложено множество способов управления моментом. Не все из них нашли широкое применение в промышленности. Поэтому, в данной статье рассматриваются только самые популярные методы управления. Обсуждаемые методы контроля момента представлены для систем управления и с синусоидальной обратной ЭДС.

Существующие методы управления моментом могут быть классифицированы различным способом.

    Чаще всего методы управления моментом разделяют на следующие группы:
  • линейные (ПИ, ПИД) регуляторы;
  • нелинейные (гистерезисные) регуляторы.
Метод управления Диапазон регулирования скорости Погрешность скорости 3 , % Время нарастания момента, мс Пусковой момент Цена Описание
1:10 1 5-10 Не доступно Низкий Очень низкая Имеет медленный отклик при изменении нагрузки и небольшой диапазон регулирования скорости, но при этом прост в реализации.
>1:200 2 0 Высокий Высокая Позволяет плавно и быстро управлять основными параметрами двигателя - моментом и скоростью. Для работы данного метода требуется информация о положении ротора.
>1:200 2 0 Высокий Высокая Гибридный метод, разработанный для того чтобы объединить преимущества и .
>1:200 2 0 Высокий Высокая Имеет высокую динамику и простую схему, но характерной особенностью его работы являются высокие пульсации тока и момента.
>1:200 2 0 Высокий Высокая Имеет частоту переключения инвертора ниже чем у других методов и предназначен для уменьшения потерь при управлении электродвигателями большой мощности.

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Среди векторного управления наиболее широко используются (FOC - field oriented control) и (DTC - direct torque control).

Линейные регуляторы момента

Линейные регуляторы момента работают вместе с широтно-импульсной модуляцией (ШИМ) напряжения. Регуляторы определяют требуемый вектор напряжения статора усредненный за период дискретизации. Вектор напряжения окончательно синтезируется методом ШИМ, в большинстве случаев используется пространственно векторная модуляция (ПВМ). В отличие от нелинейных схем управления моментом, где сигналы обрабатываются по мгновенным значениям, в линейных схемах контроля момента, линейный регулятор (ПИ) работает с значениями усредненными за период дискретизации. Поэтому частота выборки может быть уменьшена с 40 кГц у нелинейных регуляторов момента до 2-5 кГц в схемах линейных регуляторов момента.

Полеориентированное управление

Полеориентированное управление (ПОУ, англ. field oriented control, FOC) - метод регулирования, который управляет бесщеточным переменного тока ( , ), как машиной постоянного тока с независимым возбуждением, подразумевая, что поле и могут контролироваться отдельно.

Полеориентированное управление, предложенное в 1970 году Блашке и Хассе основано на аналогии с механически коммутируемым . В этом двигателе разделены обмотки возбуждения и якоря, потокосцепление контролируется током возбуждения , а момент независимо управляется регулировкой тока . Таким образом, токи потокосцепления и момента электрически и магнитно разделены.


Общая функциональная схема бездатчикового полеориентированного управления 1

С другой стороны бесщеточные электродвигатели переменного тока ( , ) чаще всего имеют трехфазную обмотку статора, и вектор тока статора I s используется для контроля и потокосцепления и момента. Таким образом, ток возбуждения и ток якоря объединены в вектор тока статора и не могут контролироваться раздельно. Разъединение может быть достигнуто математически - разложением мгновенного значения вектора тока статора I s на две компоненты: продольную составляющую тока статора I sd (создающую поле) и поперечную составляющую тока статора I sq (создающую момент) во вращающейся dq системе координат ориентированной по полю ротора (R-FOC – rotor flux-oriented control) - рисунок выше. Таким образом, управление бесщеточным двигателем переменного тока становится идентичным управлению и может быть осуществлено используя инвертер ШИМ с линейным ПИ регулятором и пространственно-векторной модуляцией напряжения.

В полеориентированном управлении момент и поле контролируются косвенно посредством управления составляющими вектора тока статора.

Мгновенные значения токов статора преобразовываются к dq вращающейся системе координат с помощью преобразования Парка αβ/dq, для выполнения которого также требуется информации о положении ротора. Поле контролируется через продольную составляющую тока I sd , в то время как момент контролируется через поперечную составляющую тока I sq . Обратное преобразование Парка (dq/αβ), математический модуль преобразования координат, позволяет вычислить опорные составляющие вектора напряжения V sα * и V sβ * .


Для определения положения ротора используется либо датчик положения ротора установленный в электродвигателе либо реализованный в системе управления бездатчиковый алгоритм управления, который вычисляет информацию о положении ротора в режиме реального времени на основании тех данных, которые имеются в системе управления.

Блок-схема прямого управления моментом с пространственно векторной модуляцией с регулировкой момента и потокосцепления с обратной связью работающей в прямоугольной системе координат ориентированной по полю статора представлена на рисунке ниже. Выходы ПИ регуляторов момента и потокосцепления интерпретируются как опорные составляющие напряжения статора V ψ * и V M * в системе координат dq ориентированной по полю статора (англ. stator flux-oriented control, S-FOC). Эти команды (постоянные напряжения) затем преобразуются в неподвижную систему координат αβ, после чего управляющие значения V sα * и V sβ * поступают на модуль пространственно векторной модуляции.


Функциональная схема прямого управления моментом с пространственно векторной модуляцией напряжения

Обратите внимание, что данная схема может рассматриваться как упрощенное управление ориентированное по полю статора (S-FOC) без контура управления током или как классическая схема (ПУМ-ТВ, англ. switching table DTC, ST DTC) в которой таблица включения заменена модулятором (ПВМ), а гистерезисный регулятор момента и потока заменены линейными ПИ регуляторами.

В схеме прямого управления моментом с пространственно векторной модуляцией (ПУМ-ПВМ) момент и потокосцепление напрямую управляются в замкнутом контуре, поэтому необходима точная оценка потока и момента двигателя. В отличии от классического алгоритма гистерезисного , работает на постоянной частоте переключения. Это значительно повышает характеристики системы управления: уменьшает пульсации момента и потока, позволяет уверенно запускать двигатель и работать на низких оборотах. Но при этом снижаются динамические характеристики привода.

Нелинейные регуляторы момента

Представленная группа регуляторов момента отходит от идеи преобразования координат и управления по аналогии с коллекторным двигателем постоянного тока, являющегося основой для . Нелинейные регуляторы предлагают заменить раздельное управление на непрерывное (гистерезисное) управление, которое соответствует идеологии работы (включено-выключено) полупроводниковых устройств инвертора.

В сравнении с полеориентированным управлением схемы прямого управления моментом имеют следующие характеристики:

    Преимущества:
  • простая схема управления;
  • отсутствуют контуры тока и прямое регулирование тока;
  • не требуется преобразование координат;
  • отсутствует отдельная модуляция напряжения;
  • датчик положения не требуется;
  • хорошая динамика.
    Недостатки:
  • требуется точная оценка вектора магнитного потокосцепления статора и момента;
  • сильные пульсации момента и тока из-за нелинейного (гистерезисного) регулятора и переменной частоты переключения ключей;
  • шум с широким спектром из-за переменной частоты переключения.

Прямое управление моментом

Впервые метод прямого управления моментом с таблицей включения был описан Такахаси и Ногучи в статье IEEJ представленной в сентябре 1984 года и позже в статье IEEE опубликованной в сентябре 1986 года . Схема классического метода прямого управления моментом (ПУМ) на много проще, чем у метода управления по полю (), так как не требуется преобразования систем координат и измерения положения ротора. Схема метода прямого управления моментом (рисунок ниже) содержит оценщик момента и потокосцепления статора, гистерезисные компараторы момента и потокосцепления, таблицу включения и инвертор.

Принцип метода прямого управления моментом заключается в выборе вектора напряжения для одновременного управления и моментом и потокосцеплением статора. Измеренные токи статора и напряжение инвертора используются для оценки потокосцепления и момента. Оцененные значения потокосцепления статора и момента сравниваются с управляющими сигналами потокосцепления статора ψ s * и момента двигателя M * соответственно посредством гистерезисного компаратора. Требуемый вектор напряжения управления электродвигателем выбирается из таблицы включения исходя из оцифрованных ошибок потокосцепления d Ψ и момента d M генерируемых гистерезисными компараторами, а также исходя из сектора положения вектора потокосцепления статора полученного исходя из его углового положения . Таким образом, импульсы S A , S B и S C для управления силовыми ключами инвертора генерируются посредством выбора вектора из таблицы.


Классическая схема прямого управления моментом с таблицей включения с датчиком скорости

Имеется множество вариаций классической схемы нацеленых на улучшение пуска, условий перегрузки, работы на очень низких скоростях, уменьшение пульсаций момента, работу на переменной частоте переключения и уменьшение уровня шумов.

Недостатком классического метода прямого управления моментом является наличие высоких пульсаций тока и в установившемся состоянии. Проблема устраняется повышением рабочей частоты инвертора выше 40кГц, что увеличивает общую стоимость системы управления .

Прямое сомоуправление

Заявка на патент метода прямого самоуправления была подана Депенброком в октябре 1984 года . Блок схема прямого самоуправления показана ниже.

Основываясь на командах потокосцепления статора ψ s * и текущих фазовых составляющих ψ sA , ψ sB и ψ sC компараторы потокосцепления генерируют цифровые сигналы d A , d B и d C , которые соответствуют активным состояниям напряжений (V 1 – V 6). Гистерезисный регулятор момента имеет на выходе сигнал d M , который определяет нулевые состояния. Таким образом, регулятор потокосцепления статора задает отрезок времени активных состояний напряжений, которые перемещают вектор потокосцепления статора по заданной траектории, а регулятор момента определяет отрезок времени нулевых состояний напряжений, которые поддерживают момент электродвигателя в определенном гистерезисом поле допуска.


Схема прямого самоуправления

    Характерными особенностями схемы прямого самоуправления являются:
  • несинусоидальные формы потокосцепления и тока статора;
  • вектор потокосцепления статора перемещается по шестиугольной траектории;
  • нет запаса по напряжению питания, возможности инвертора используются полностью;
  • частота переключения инвертора ниже чем у прямого управления моментом с таблицей включения;
  • отличная динамика в диапазонах постоянного и ослабленного поля.

Заметьте, что работа метода прямого самоуправления может быть воспроизведена с помощью схемы при ширине гистерезиса потока 14%.



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные