Возможно, худшая подделка Imax B6

Пользовательский обзор популярной модели зарядного устройства IMAX B6*клон*через три года работы.

Всем привет.Привет сайтчанам и простым читателям этой статьи.

Сегодня моя статейка будет посвящена пользовательскому обзору популярной модели АЙМАКС Б6.

Модель хоть и не новая-есть уже куча ее новых версий-но мой вариант есть в продаже и пользуется спросом.Надеюсь этот обзорчик будет чем то интересен.

Начну с небольшого лирического вступления-для тех кто не в курсе-ЗАЧЕМ?-ПОЧЕМУ?ДЛЯ ЧЕГО ТАКАЯ ЗАРЯДКА?

На сегодняшний день считается что интелектуальная зарядка-лучьшее что можно использовать для зарядки разных типов аккумуляторов.

Обычно в ней есть весь нужный набор настроек для работы с аккумуляторами.

Такая зарядка облегчает это дело-да и что там говорить-это ПРОСТО И УДОБНО не нужно перерывать кучу инфы по аккумуляторам для их правильной зарядки-УМНЫЕ ЛЮДИ ВСЕ ЭТО запихнули в зарядку- за что им отдельное спасибо.

Таксс с лирикой вроде окончено-перейдем к делу.

ЧТО МНЕ ПОНРАВИЛОСЬ И НЕ ОЧЕНЬ В ЭТОМ ЗАРЯДНОМ УСТРОЙСТВЕ-за все время работы.

ПОНЯТНОЕ МЕНЮ И НАВИГАЦИЯ(на англ.языке)--учитывая что это была моя первая интелект.зарядка+на момент покупки информации было мало по ней-инструкции полученой при покупке мне хватило что бы разобраться в нужных функциях.

ЗАРЯДКА ПРАКТИЧЕСКИ ВСЕХ ХОДОВЫХ ТИПОВ АККУМУЛЯТОРОВ--это очень удобно..т.к все в одном компактном устройстве.

ВЫБОР ПАРАМЕТРОВ ДЛЯ ЗАРЯДКИ --как в ручном режиме(если вы хорошо знаете и разбираетесь в аккумуляторах)-выбираем то что нам надо,сохраняем и зарядка работает в этих параметрах-для всех типов аккумов.

Для пользователей менее опытных-как я-есть АВТОРЕЖЫМЫ практически для всех типов аккумов-очень удобно.

ВОЗМОЖНОСТЬ ЗАРЯДКИ-РАЗРЯДА И ЦИКЛОВ--для никель кадмиевых и метал гидридных аккумов.Выбор этих функций по отдельности,

Выбор количества циклов(в моем варианте1 -5)

Выбор временного интервала между циклами(макс 60 минут в моем варианте если не путаю).После такого цикла можно увидеть состояние аккума.

Выбор тока заряда от 0.1 А-5А на заряд и 0.1-1А-разряд-очень удобно.

РАЗЛИЧНЫЕ РЕЖИМЫ ДЛЯ ЛИТИЕВЫХ АККУМОВ--в том числе и функция балансира-когда можно в онлайн режиме отследить состояние каждой банки отдельно.

ФУНКЦИЯ ОГРАНИЧЕНИЯ ЗАРЯДКИ АККУМА--(количество залитого в аккум-не путать с током заряда).К примеру у меня есть пара полуживых-но работающих аккумов-ко торые заряжаются и не отключаются-доходило до почти кипения аккума и его нагрева.Тут просто выставлял ограничение на залив(5А к примеру)-после чего зарядка отключалась-в видео детальнее.Кто знает как эта функция правильно называется-подскажите-буду благодарен.

ФУНКЦИЯ ОГРАНИЧЕНИЯ ПО ВХОДЯЩЕМУ НАПРЯЖЕНИЮ-удобно при запитке зарядки от прикуривателя авто-дабы его не посадить до уровня невозможности завести авто(предел выставляется в ручную).Выручала эта фишка не раз на рыбалке и отдыхе.

По плюсам вроде бы все-это то что отметил при пользовании для себя-Функционал у нее конечно очень богат-кому интересно можете глянуть в интернете подробный обзор-их в сети море.

ПО МИНУСАМ--которые отменил для себя.

СИЛЬНО ГРЕЕТСЯ-особенно в летнее время..при длительной работе(нет ативного охлаждения-только пасив -через алюминевый корпус)-с другой стороны -тихо работает.

НЕТ ВОЗМОЖНОСТИ ОТКЛЮЧЕНИЯ ПОДСВЕТКИ-горит ярко синим цветом-не всегда удобно при пользовании в доме.

в принципе и все.

А так зарядкой в общем доволен-позднее обзавелся и ее оригинальной версией-этому посвящу одну из следующих статей.

Дорогие читатели..какие то моменты очень долго и сложно описывать-смотрите мое видео на этот обзор-надеюсь что то оно дополнит.

На сегодня все-всем пока -до следующих статеек.

Если занимаетесь электроникой, возможно у вас есть умная зарядка Imax B6 (mini). В комплект не входят балансировочные разъемы и бокс для установки аккумуляторов. Конечно, умельцы начинают их делать своими руками из подручных материалов или готовых купленных запчастей. У кого-то это получается лучше, а у кого-то — нет. В этом посте подробно расскажу, покажу, как сделать.

Для изготовления мне потребовалось:

1. Бокс 2×18650;

2. Бокс 4×18650;


3. Балансировочные разъемы 2s 3s 4S 5S 6s;

4. Провода AWG18;

5. Щупы бананы;

6. Винтовые клеммные колодки 2EDG-5.08-4P + 2EDGV-5.08-4P — 2шт.;

7. Фольгированный стеклотекстолит.

И так, надо изготовить печатную плату

Сделано в программе Sprint Layout, . Скачать печатной платы, формат lay6

После травления платы, все собираем и припаиваем.

Ниже на фото разъем подключен на 5 пять банок. Шестой отсек держателя использовать не будем, так как заряжаем 5 АКБ.

Схема подключения к балансировочному разъему Imax B6

Не имеет значения какое у вас зарядное, оригинал — не оригинал, все они имеют пять сокетов для балансировки литиевых аккумуляторов до 6 штук. Для подключения к балансировочному сокету, соедините все банки последовательно, затем 1-й провод (красный) разъема идет на плюс сборки, а последний провод на минус сборки, соединения между банками идут на промежуточные провода разъема. На (+ ) первой банки и ( ) последней, необходимо припаять щупы бананы. Ниже приведена схема подключения максимального количества аккумуляторов.

На данном примере видим максимальное подключение аккумуляторов, 6 штук. Для подключения пяти, четырех … делаем аналогично, не забываем соблюдать полярность.

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF - это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем - 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов - ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус - к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 - разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 - это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат - ток плавно нарастает до номинального
Коричневый провод - запрет разряда. Если на нём 5 Вольт - разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе - 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже "земля"(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора - никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 - цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка - на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного - источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

В IMAX B6: схема и печатная плата

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF - это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем - 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов - ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус - к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 - разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 - это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат - ток плавно нарастает до номинального
Коричневый провод - запрет разряда. Если на нём 5 Вольт - разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе - 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже "земля"(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора - никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 - цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка - на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного - источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

Универсальное зарядное устройство iMax-B6 по праву считается народным. Любой авиамоделист или человек имеющий в хозяйстве Li-Po аккумуляторы издалека узнает синюю шайтан-коробку.

внешний вид шайтан-коробки

Для своего времени зарядка оказалась настолько революционной и простой, что ее начали копировать все кому не лень. Существуют несколько версий зарядника:
- Оригинал назывался BC-6 и производился компанией Bantam на базе ATmega32/ATmega32L .
- Потом его удачно слизала SkyRC, а про Bantam все забыли.
- Точная копия SkyRC на ATmega32 сделанная в подвале (такая попалась мне).
- Копия с отличиями в схеме и плате.
- Зарядка на чипе . Клоном ее назвать трудно так как это устройство совсем на другом микроконтроллере и только внешне похожее на iMax-B6.
- В 2016/2017 году китайцы достигли дна оптимизации и выпустили новый зарядник, который нормально заряжает только литий. Чип в корпусе TQFP48 и без маркировки. Вангуют что это STC или ABOV MC96F6432 . Похоже ванги ошиблсь - это оказался MEGAWIN MA84G564 . Сторонних прошивок нет и похоже не будет.

В сети гуляют как минимум три схемы оригинального iMax-B6. Самая удачная попытка срисовать схему и понять как она работает была предпринята пользователем electronik-irk . Со своими наработками он поделился в сообществе "Рожденный с паяльником".

Но в любой бочке меда всегда найдется ложка дегдя. Нашлась она и в iMax-B6. Это проблема с Δv во время заряда 1.2 вольтовых Ni-Ca и Ni-Mh аккумуляторов. В свое время я писал в сообщество о проблеме с Δv, но ответа так и не получил. Мое мнение - трудности с Δv возникают из-за нескольких косяков. Первый - во время включения и при каждом измерении на конденсаторе C21 и выходных клемах возникает выброс порядка 3-4 вольта, который вносит не хилые искажения Δv у 1.2 вольтовых аккумуляторов.


схема силовой части

Эта проблема легко решается добавлением сопротивления R128 с номиналом 4.7кОм параллельно конденсатору C21. В качестве бонуса этот резистор исправляет баг-фичу некоторых iMax-ов - умирать при включении без нагрузки. При этом обычно горят VT26 или VT27.

Подпаивать R128 надо сюда

Вторая проблема маленькая разрядность АЦП и шумы от блока питания и цифровых цепей. 10bit еле-еле хватает для диапазона 0в - 30в с точностью 0.29мВ. Чтобы хоть как-то облегчить работу АЦП нужно провести комплекс мероприятий:
- Повысить стабильность опорного напряжения.
- Поменять родную прошивку iMax на cheali-charger . Данная прошивка использует трюк с передискретизацией и добавлением искуственного шума . После всех этих доработак вы сможете ловить Δv у Ni-Ca/Ni-Mh при зарядных токах > 0.5C

В iMax-е построенном на ATmega32 применяется не самый точный источник опорного напряжения в 2.5 вольта на базе TL431 . Слегка повысить его стабильность можно допаяв электролитический конденсатор емкостью 10мкФ между AREF и землей.


опорник в левом вехнем углу

О перепрошивки, калибровке и активации режима искусственного шума я опишу во части.

UDP: Как правильно заметил Loll Ol в комментариях, TL431 очень критична к емкости выходного конденсатора. Красным отмечены зоны стабильной работы: 0.001mF - 0.01mF и 10mF.


график стабильности TL431



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные