Что влияет на КПД и эффективность работы солнечных батарей? Эффективность работы солнечных панелей разных типов и способы ее повышения

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Достигнуть впечатляющих для сегмента фотоэлектрических элементов успехов удалось стартапу Инновационного парка EPFL в Германии.

Согласно опубликованной пресс-службой учебного заведения информации, команде студентов Института Фраунгофера во главе с руководителем проекта Лораном Кулотом удалось модернизировать применяемые в космической сфере технологии, существенно удешевив производство и повысив эффективность солнечных батарей. Показатели КПД прототипа будущей массовой фотоэлектрической панели, которую создатели рассчитывают превратить в серийный продукт после разрешения технологических вопросов и поиска инвесторов, вдвое превышают стандартные для отрасли. Напомним, что КПД имеющихся в продаже солнечных батарей в большинстве случаев достигает 15-20%, что является пределом для применяемых сегодня технологий «улавливания» солнечных лучей с последующим преобразованием этой энергии в электрическую. Полученные в ходе тестирования панели-прототипа результаты показали эффективность выработки электроэнергии на уровне 36,4%, что в случае перехода на массовый выпуск источников преобразования энергии Солнца в электричество позволит достичь выдающегося показателя — 30-32%.

Создатели принципиально нового и сверхэффективного типа солнечной батареи рассказали о примененной ими методике повышения КПД батареи, для чего специалисты EPFL воспользовались оптическими линзами. Применяемые в космосе панели для преобразования солнечной энергии в электрическую изготавливаются с применением сверхдорогих материалов, помогающих улучшить свойства «улавливания» лучей Солнца в специальных мини-ячейках. Немецкие специалисты из независимой лаборатории Института Фраунгофера применили этот же принцип, максимально уменьшив площадь очень дорогого слоя высокопроизводительных ячеек. Вместо «растянутого» на всю площадь панели слоя фотоэлементов из дорогостоящих материалов разработчики взяли маленький кусочек высокопроизводительных ячеек, сконцентрировав на нем весь поступающий на поверхность элемента солнечный свет. Верхний слой поверхности батареи состоит из микроскопических линз, установленных на механической основе, при помощи маленьких сервомоторов смещающей фокусируемый свет точно на фотоподложку в зависимости от расположения земного светила.

Такая методика обеспечивает максимальную эффективность преобразования энергии на протяжении всего светового дня при сохранении низкой стоимости производства. Цена выпуска вдвое более эффективных солнечных элементов после налаживания серийного производства основанных на разработанных специалистами EPFL принципах батарей превысит себестоимость имеющихся на рынке только панелей на 10-15% при стопроцентном наращивании показателя КПД. Говорить о сроках выпуска перспективной разработки в массовых масштабах создатели очень дешевого в сравнении с выпускающимися для применения в космосе образцами решения говорят пока неохотно, ссылаясь на необходимости отработки технологического базиса для налаживания крупносерийного выпуска недорогих в изготовлении, но крайне эффективных солнечных панелей с КПД 36%. Ожидается, что первые мелкосерийные образцы таких элементов появятся не раньше, чем через 2-3 года, когда себестоимость выпуска фотоэлектрических панелей сможет установить новый ценовой рекорд. Сегодня приобретение и установка подобных батарей на загородных участках для вырабатывания электрической энергии «из воздуха» обходится многократно дороже подключения к электросетям — окупать дорогостоящую покупку приходится в буквальном смысле десятилетия.

По этой причине активно продвигаемые на Западе «солнечные плантации» из сотен и тысяч отдельных фотоэлементов продолжают субсидироваться за счет государственных программ стимулирования сферы альтернативной энергетики. Только за счет вложения миллиардов долларов и евро в развитие этой области Европе и США удалось добиться внушительных и внушающих оптимизм экономических показателей, на бумаге выглядящих настоящим прорывом в сфере получения экологически чистой электроэнергии. На деле каждый выработанный из Солнца Киловатт обходится значительно дороже, чем разведка, добыча и последующее извлечение из недр земли углеводородов, продолжающих составлять основу общемировой энергетики. Единственной альтернативой «бесплатной» электроэнергии остается атомная энергетика, категорически вычеркнутая Евросоюзом и большинством других мировых держав из списка доступных источников электричества. Причиной становится опасность повторения трагических событий 1986-го и 2011 годов в советском Чернобыле и японской Фукусиме, когда на эксплуатируемых СССР и Японией соответственно атомных электростанциях фиксировались радиационные аварии предельного по Международной шкале ядерных событий седьмого уровня.

Именно поэтому Запад продолжает рассматривать солнечную энергетику в качестве самого перспективного направления при формировании базы для создания «энергетического задела» будущим поколениям, которым очень скоро придется столкнуться с полным отсутствием легкоизвлекаемых запасов углеводородов — нефти, газа и угля. Уже сегодня запасы расположенных на доступной для современных буровых установок глубине энергетических ресурсов эксперты называют «близкими к истощению», что вынуждает ученых и исследователей энергично перебирать новые варианты для сохранения текущего уровня потребления электричества мировой промышленностью. Потенциально выгодными с технологической точки зрения пока остаются только два направления — ядерная энергетика и фотоэлементы, преобразующие «добирающийся» по поверхности планеты свет галактического светила в нужную для жизнедеятельности человека электрическую энергию. Искусственный отказ от атома оставляет западным державам, в первую очередь Евросоюзу и Соединенным Штатам Америки, только один путь для дальнейшего развития и модернизации собственной энергетики.

По мнению главного операционного директора стартапа EPFL Флориана Герлиха, созданные немецкими специалистами батареи позволят снизить цену за вырабатываемый Киловатт-час электроэнергии для потребителей до приемлемого уровня, когда покупка дорогой солнечной панели даже без привлечения государственных субсидий окупится после непродолжительной эксплуатации. Увеличение КПД до 36% — многообещающий прорыв, способный «встряхнуть» мировую энергетическую систему в рамках общемирового проекта по поиску наиболее выгодных с финансовой точки зрения и показателей экологичности способов получения электричества. На последнее, например, активно «переезжают» выпускаемые крупнейшими автоконцернами автомобили, доля которых с установленными под капотом электродвигателями к 2030-2035 годам достигнет, по предварительным подсчетам экспертов, серьезных 10-12% в масштабе всего автопарка на планете. Активное содействие этому окажут и разработки ученых, на протяжении последних десятилетий продолжающих биться за каждый процент эффективности выработки электроэнергии, добиваясь достижения предельно допустимых значений в гонке за «бесплатными» киловаттами.

О базовой станции на солнечных батареях. Оговорка состояла в том, что срок окупаемости системы питания на солнечных панелях - 2-3 года. Я по роду деятельности занимаюсь монтажом и наладкой систем альтернативных источников энергии и, как мне видится, авторы статей на данную тематику занижают время, в течении которого система полностью окупается, причем в несколько раз.

Не претендую на абсолютную точность, но цифры берутся не с потолка, а с конкретного объекта, на котором делали бригадой монтаж – Симферопольский производственно-складской комплекс «Мяско». В расчеты включены основные самые затратные статьи.

Данный завод уже имел на момент начала наших работ ферму на 300+ панелей, собранных по модульной системе. Мы добавляли еще шесть контуров по двадцать панелей. (Контур – объединение определенного количества панелей в один источник энергии, таким образом набирается контур нужного для инвертора напряжения).

Сухие расчеты

Теперь немного к цифрам, все расчеты ведутся с стоимостью доставки в Крым с территории Германии.


Итого:
Ферма в 120 панелей обходится в 59.000 долларов. В эти расчеты еще не включена оплата труда проектировщику, инженеру и монтажникам. В сумме все выльется в бюджет, стремящийся к 65.000$.

Фактическая выработка электроэнергии

Теоретически, в идеальных условиях, одна панель должна выдавать примерно 220-230Вт в час (в пересчете на привычные нам 220 вольт). Ниже представлены графики, которые ведет блок управления в инверторе, мониторить их можно удаленно.

Солнечный день :

Переменная облачность :

Месячный график :

В последнем графике следует учесть, что два дня система выключалась на время, а три первых дня месяца и два последних отсутствуют.

В стабильно солнечный летний месяц, с продолжительным световым днем, такая ферма выдаст максимум 4500-4700кВт*ч. Зная эти цифры, можно подсчитать рентабельность системы, учитывая тарифы на электроэнергию.

При этом нужно учесть, что ферма собрана без аккумуляторов, их наличие увеличило бы общую стоимость системы, время окупаемости, соответственно, тоже.

Таким образом, у меня никак не получается выйти на окупаемость в 2-3 года. 10 лет - более-менее реальный срок.

Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % - продукт от Q-Cells . Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole . Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность - ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.

Ежедневно на нашу планету поступают миллиарды киловатт солнечной энергии. Люди уже давно начали использовать эту энергию для своих нужд. С течением прогресса для преобразования энергии солнечного света стали использовать солнечные батареи. Но эффективны ли эти приборы? Сколько составляет КПД солнечных батарей, и от чего он зависит? Каков их срок окупаемости и как можно вычислить рентабельность использования солнечных батарей? Эти вопросы волнуют каждого, кто планирует или уже решил приобрести солнечные панели, поэтому этой актуальной теме посвящена настоящая статья.

Давайте вкратце разберем, на чем основан принцип действия солнечных панелей. В основе лежит физическое свойство полупроводников. Вследствие выбивания фотонами света электронов с внешней орбиты атомов, образуется достаточно большое количество свободных электронов. После замыкания цепи и возникает электрический ток. Но, как правило, одного-двух фотоэлементов для получения достаточной мощности не хватает, поэтому, в состав солнечных модулей чаще всего входит несколько солнечных батарей. Чем больше фотоэлементов соединяют вместе, то есть чем больше площадь солнечных панелей, тем больше и производимая ими мощность. Помимо площади панелей ощутимое влияние на производимую мощность оказывают интенсивность солнечного света и угол падения лучей.

Разбираем понятие КПД

Значение КПД панели получают путем деления мощности электрической энергии на мощность солнечного света, падающего на панель. На сегодняшний день среднее значение этого показателя на практике составляет 12-25%, в теории же эта цифра приближается к 80-85%. В чем же причина такой большой разницы? В первую очередь, это зависит от используемых для изготовления солнечных панелей материалов. Как уже известно, основной элемент, входящий в состав панелей, это кремний. Один из главных недостатков этого вещества – способность поглощать лишь инфракрасное излучение, то есть энергия ультрафиолетовых лучей тратится впустую. Поэтому одно из основных направлений, в котором работают ученые, пытающиеся увеличить КПД солнечных панелей – это разработка многослойных модулей.

Многослойные батареи представляют собой конструкцию, состоящую из слоев различных материалов. Их подбирают в расчете на кванты разной энергии. То есть один слой поглощает энергию зеленого цвета, второй – синего, третий – красного. В теории различные комбинации этих слоев могут дать значение КПД 87%. Но это, к сожалению, лишь теория. Как показывает практика, изготовление подобных конструкций в производственных масштабах очень трудоемкое занятие, да и стоимость таких модулей очень высока.

На КПД солнечных модулей влияет и вид используемого кремния. Панели, изготовленные из монокристаллического кремния, имеют более высокий коэффициент полезного действия, нежели панели из поликристаллического кремния. Но и цена монокристаллических батарей выше.

Основное правило: при более высоком КПД для генерации электроэнергии заданной мощности потребуется модуль меньшей площади, то есть в состав солнечной панели будет включено меньшее количество фотоэлементов.

Как быстро окупятся солнечные батареи?

Стоимость солнечных батарей сегодня достаточно высока. А с учетом небольшого значения КПД панелей, вопрос их окупаемости очень актуален. Срок службы батарей, работающих от солнечной энергии, составляет порядка 25 и более лет. О том, чем обусловлен столь долгий срок эксплуатации, мы поговорим чуть позже, а пока выясним озвученный выше вопрос.

На срок окупаемости влияют:

  • Тип выбранного оборудования. Однослойные фотоэлементы имеют более низкий КПД в сравнении с многослойными, но и гораздо меньшую цену.
  • Географическое положение, то есть чем больше солнечного света в Вашей местности, тем быстрее окупится установленный модуль.
  • Стоимость оборудования. Чем больше средств Вы потратили на приобретение и монтаж элементов, входящих в состав солнечной системы энергосбережения, тем длиннее срок окупаемости.
  • Стоимость энергоресурсов в Вашем регионе.

Средние цифры срока окупаемости для стран Южной Европы составляют 1,5-2 года, для стран Средней Европы – 2,5-3,5 года, а в России срок окупаемости равен примерно 2-5 годам. В ближайшем будущем эффективность солнечных батарей значительно увеличится, связано это с разработкой более совершенных технологий, позволяющих увеличивать КПД и снижать себестоимость панелей. А как следствие уменьшится и срок, в течение которого система энергосбережения на солнечной энергии окупит себя.

Сколько прослужат солнечные батареи?

В состав солнечных панелей не входят механические подвижные части, поэтому они достаточно надежны и долговечны. Как уже упоминалось выше, срок их службы составляет более 25 лет. При правильной эксплуатации они могут прослужить и 50 лет. Большим плюсом является то, что столь долгий срок службы обходится без крупных поломок, достаточно лишь систематически очищать зеркала фотоэлементов от пыли и других загрязнений. Это необходимо для лучшего поглощения энергии, а, следовательно, и для более высокого показателя КПД.

Долгий период службы является одним из главных критериев при принятии решения «приобретать или нет солнечные батареи». После того как батареи окупят сами себя, получаемая Вами электрическая энергия, будет абсолютно бесплатной. Даже если период окупаемости будет максимальным (порядка 6 лет), Вы как минимум 20-25 лет не будете платить за энергоресурсы.

Последние разработки, увеличивающие показатель КПД

Чуть ли не каждый день ученые по всему миру заявляют о разработке нового метода, позволяющего увеличить коэффициент полезного действия солнечных модулей. Познакомимся с самыми интересными из них. В прошлом году компания Sharp представила общественности солнечный элемент, эффективность которого составила 43,5%. Этой цифры они смогли добиться с помощью установки линзы для фокусировки энергии непосредственно в элементе.

Не отстают от компании Sharp и немецкие физики. В июне 2013 года они представили свой фотоэлемент площадью всего в 5,2 кв. мм, состоящий из 4-х слоев полупроводниковых элементов. Такая технология позволила добиться КПД в 44,7%. Максимальная эффективность в данном случае также достигается за счет помещения вогнутого зеркала в фокус.

В октябре 2013 года были опубликованы результаты работ ученых из Стэнфорда. Они разработали новый жаропрочный композит, способный увеличить производительность фотоэлементов. Теоретическое значение КПД составляет около 80%. Как мы писали выше, полупроводники, в состав которых входит кремний, способны поглощать лишь ИК-излучение. Так вот действие нового композитного материала направлено на перевод высокочастотного излучения в инфракрасное.

Следующими стали английский ученые. Они разработали технологию, способную увеличить эффективность элементов на 22%. Они предложили на гладкой поверхности тонкопленочных панелей разместить наношипы из алюминия. Этот металл был выбран по причине того, что солнечный свет им не поглощается, а, наоборот, рассеивается. Следовательно, увеличивается количество поглощаемой солнечной энергии. Отсюда и рост производительности солнечной батареи.

Здесь приведены лишь основные разработки, но дело ими не ограничивается. Ученые борются за каждую десятую долю процента, и пока им это удается. Будем надеяться, что в ближайшем будущем показатели эффективности солнечных батарей будут на должном уровне. Ведь тогда и выгода от использования панелей будет максимальной.

Статью подготовила Абдуллина Регина

В Москве уже применяют новые технологии освещения улиц и парков, я думаю, там экономическая эффективность была просчитана:



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные