Что такое Mimo в wifi? MIMO - многоантенные технологии в LTE

April 9th, 2014

В свое время как то тихо и незаметно ушло ИК-соединение, потом перестали пользоваться Bluetooth для обмена данными. И теперь вот настала очередь Wi-Fi …

Разработана многопользовательская система с множеством входов и выходов, позволяющая сети обмениваться данными с более чем одним компьютером одновременно. Создатели утверждают, что при использовании того же самого диапазона радиоволн, отведённого под Wi-Fi, скорость обмена может быть утроена.

Компания Qualcomm Atheros разработала многопользовательскую систему с множеством входов и выходов (протокол MU-MIMO), позволяющая сети обмениваться данными с более чем одним компьютером одновременно. Компания планирует начать демонстрацию технологии в течение ближайших нескольких месяцев, прежде чем начать поставки клиентам в начале следующего года.

Однако, для того, чтобы получить эту высокую скорость обмена, пользователям придётся обновить и свои компьютеры и сетевые маршрутизаторы.

По протоколу Wi-Fi, клиенты обслуживаются последовательно - в течение определённого интервала времени задействуется только одно устройство передачи и приема информации - так что используется только небольшая часть пропускной способности сети.

Накопление этих последовательных событий создаёт падение скорости обмена, поскольку всё большее количество устройств подключаются к сети.

Протокол MU-MIMO (multi-user, multiple input, multiple output) обеспечивает одновременную передачу информации группе клиентов, что даёт более эффективное использование имеющейся пропускной способности сети Wi-Fi и тем самым ускоряет передачу.

Qualcomm полагает, что такие возможности будут особенно полезны конференц-центрам и интернет-кафе, когда несколько пользователей подключаются к одной и той же сети.

В компании также считают, что речь идёт не только об увеличении абсолютной скорости, но и о более эффективном использовании сети и эфирного времени для поддержки растущего числа подключённых устройств, услуг и приложений.

Чипы MU-Mimo Qualcomm собирается продавать производителям маршрутизаторов, точек доступа, смартфонов, планшетов и прочих устройств с поддержкой Wi-Fi. Первые чипы смогут работать одновременно с четырьмя потоками данных; поддержка технологии будет включена в чипы Atheros 802.11ac и мобильные процессоры Snapdragon 805 и 801. Демонстрация работы технологии состоится в нынешнем году, и первые поставки чипов запланированы на 1-й квартал будущего года.

Ну а теперь кому хочется подробнее вникнуть в эту технологию продолжаем …

MIMO (Multiple Input Multiple Output – множественный вход множественный выход) – это технология, используемая в беспроводных системах связи (WIFI,WI-MAX , сотовые сети связи), позволяющая значительно улучшить спектральную эффективность системы, максимальную скорость передачи данных и емкость сети. Главным способом достижения указанных выше преимуществ является передача данных от источника к получателю через несколько радио соединений, откуда данная технология и получила свое название. Рассмотрим предысторию данного вопроса, и определим основные причины, послужившие широкому распространению технологии MIMO.

Необходимость в высокоскоростных соединениях, предоставляющих высокие показатели качества обслуживания (QoS) с высокой отказоустойчивостью растет от года в год. Этому в значительной мере способствует появление таких сервисов как VoIP (Voice over Internet Protocol),видеоконференции , VoD (Video on Demand) и др. Однако большинство беспроводных технологий не позволяют предоставить абонентам высокое качество обслуживания на краю зоны покрытия. В сотовых и других беспроводных системах связи качество соединения, также как и доступная скорость передачи данных стремительно падает с удалением от базовой станции (BTS). Вместе с этим падает и качество услуг, что в итоге приводит к невозможности предоставления услуг реального времени с высоким качеством на всей территории радио покрытия сети. Для решения данной проблемы можно попробовать максимально плотно установить базовые станции и организовать внутреннее покрытие во всех местах с низким уровнем сигнала. Однако это потребует значительных финансовых затрат что в конечном счете приведет к росту стоимости услуги и снижению конкурентоспособности. Таким образом, для решения данной проблемы требуется оригинальное нововведение, использующее, по возможности, текущий частотный диапазон и не требующее строительства новых объектов сети.

Особенности распространения радиоволн

Для того чтобы понять принципы действия технологии MIMO необходимо рассмотреть общие принципы распространения радио волн в пространстве. Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. На соотношение долей поглощенной, отраженной и прошедшей насквозь частей энергий влияет множество внешних факторов, в том числе и частота сигнала. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн.

Распространяющийся по вышеуказанным законам сигнал от источника к получателю после встречи с многочисленным препятствиями разбивается на множество волн, лишь часть из которых достигнет приемник. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различные пути имеют разные временные задержки .

В условиях плотной городской постройки, из-за большого числа препятствий, таких как здания, деревья, автомобили и др., очень часто возникает ситуация когда между абонентским оборудованием (MS) и антеннами базовой станции (BTS) отсутствует прямая видимость. В этом случае, единственным вариантом достижения сигнала приемника являются отраженные волны. Однако, как отмечалось выше, многократно отраженный сигнал уже не обладает исходной энергией и может прийти с запозданием. Особую сложность также создает тот факт, что объекты не всегда остаются неподвижными и обстановка может значительно измениться с течением времени. В связи с этим возникает проблема многолучевого распространения сигнала – одна из наиболее существенных проблем в беспроводных системах связи.

Многолучевое распространение – проблема или преимущество?

Для борьбы с многолучевым распространением сигналов применяется несколько различных решений. Одной из наиболее распространенных технологий является Receive Diversity – разнесенный прием . Суть его заключается в том, что для приема сигнала используется не одна, а сразу несколько антенн (обычно две, реже четыре), расположенные на расстоянии друг от друга. Таким образом, получатель имеет не одну, а сразу две копии переданного сигнала, пришедшего различными путями. Это дает возможность собрать больше энергии исходного сигнала, т.к. волны, принятые одной антенной, могут не быть принятыми другой и наоборот. Также сигналы, приходящие в противофазе к одной антенне, могут приходить к другой синфазно. Эту схему организации радио интерфейса можно назвать Single Input Multiple Output (SIMO), в противовес стандартной схеме Single Input Single Output (SISO). Также может быть применен обратный подход: когда используется несколько антенн на передачу и одна на прием. Благодаря этому также увеличивается общая энергия исходного сигнала, полученная приемником. Эта схема называется Multiple Input Single Output (MISO). В обеих схемах (SIMO и MISO) несколько антенн устанавливаются на стороне базовой станции, т.к. реализовать разнесение антенн в мобильном устройстве на достаточно большое расстояние сложно без увеличения габаритов самого оконечного оборудования.

В результате дальнейших рассуждений мы приходим к схеме Multiple Input Multiple Output (MIMO). В этом случае устанавливаются несколько антенн на передачу и прием. Однако в отличие от указанных выше схем эта схема разнесения позволяет не только бороться с многолучевым распространением сигнала, но и получить некоторые дополнительные преимущества. За счет использования нескольких антенн на передаче и приеме каждой паре передающей/приемной антенне можно сопоставить отдельный тракт для передачи информации. При этом разнесенный прием будет выполняться оставшимися антеннами, а данная антенна также будет выполнять функции дополнительной антенны для других трактов передачи. В результате, теоретически, можно увеличить скорость передачи данных во столько раз, сколько дополнительных антенн будет использоваться. Однако существенное ограничение накладывается качеством каждого радио тракта.

Принцип работы MIMO

Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе. Под системой в данном случае понимается радио соединение.

Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. Рассмотрим лишь один из возможных, наиболее простых, способов организации технологии MIMO. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 4х4 и скорости поступления входных данных 200 Мбит/сек делитель будет создавать 4 потока по 50 Мбит/сек каждый. Далее каждый их данных потоков должен быть передан через свою антенну. Обычно, антенны на передаче устанавливаются с некоторым пространственным разнесением, чтобы обеспечить как можно большее число побочных сигналов, которые возникают в результате переотражений. В одном из возможных способов организации технологии MIMO сигнал передается от каждой антенны с различной поляризацией, что позволяет идентифицировать его при приеме. Однако в простейшем случае каждый из передаваемых сигналов оказывается промаркированным самой средой передачи (задержкой во времени, затуханием и другими искажениями).

На приемной стороне несколько антенн принимают сигнал из радиоэфира. Причем антенны на приемной стороне также устанавливаются с некоторым пространственным разнесением, за счет чего обеспечивается разнесенный прием, обсуждавшийся ранее. Принятые сигналы поступают на приемники, число которых соответствует числу антенн и трактов передачи. Причем на каждый из приемников поступают сигналы от всех антенн системы. Каждый из таких сумматоров выделяет из общего потока энергию сигнала только того тракта, за который он отвечает. Делает он это либо по какому-либо заранее предусмотренному признаку, которым был снабжен каждый из сигналов, либо благодаря анализу задержки, затухания, сдвига фазы, т.е. набору искажений или «отпечатку» среды распространения. В зависимости от принципа работы системы (Bell Laboratories Layered Space-Time — BLAST, Selective Per Antenna Rate Control (SPARC) и т.д.), передаваемый сигнал может повторяться через определенное время, либо передаваться с небольшой задержкой через другие антенны.

В системе с технологией MIMO может возникнуть необычное явление, которое заключается в том, что скорость передачи данных в системе MIMO может снизиться в случае появления прямой видимости между источником и приемником сигнала. Это обусловлено в первую очередь уменьшением выраженности искажений окружающего пространства, который маркирует каждый из сигналов. В результате на приемной стороне становится проблематичным разделить сигналы, и они начинают оказывать влияние друг на друга. Таким образом, чем выше качество радио соединения, тем меньше преимуществ можно получить от MIMO.

Multi-user MIMO (MU-MIMO)

Рассмотренный выше принцип организации радиосвязи относится к так называемой Single user MIMO (SU-MIMO), где существует лишь один передатчик и приемник информации. В этом случае и передатчик и приемник могут четко согласовать свои действия, и в то же время нет фактора неожиданности, когда в эфире могут появиться новые пользователи. Такая схема вполне подходит для небольших систем, например для организации связи в доме офисе между двумя устройствами. В свою очередь большинство систем, такие как WI-FI, WIMAX, сотовые системы связи являются многопользовательскими, т.е. в них существует единый центр и несколько удаленных объектов, с каждым из которых необходимо организовать радиосоединение. Таким образом, возникают две проблемы: с одной стороны базовая станция должна передать сигнал ко многим абонентам через одну и ту же антенную система (MIMO broadcast), и в то же время принять сигнал через те же антенны от нескольких абонентов (MIMO MAC – Multiple Access Channels).

В направлении uplink – от MS к BTS, пользователи передает свою информацию одновременно на одной и той же частоте. В данном случае для базовой станции возникает сложность: необходимо разделить сигналы от различных абонентов. Одним из возможных способов борьбы с этой проблемой также является способ линейной обработки (linear processing), который предусматривает предварительную кодировку передаваемого сигнала. Исходный сигнал, согласно этому способу, перемножается с матрицей, которая составляется из коэффициентов отражающих интерференционное воздействие от других абонентов. Матрица составляется исходя из текущей обстановки в радиоэфире: числа абонентов, скоростей передачи и т.п. Таким образом, перед передачей сигнал подвергается искажению обратному с тем, которое он встретит во время передачи в радиоэфире.

В downlink – направление от BTS к MS, базовая станция передает сигналы одновременно на одном и том же канале сразу к нескольким абонентам. Это приводит к тому, что сигнал, передаваемый для одного абонента, оказывает влияние на прием всех других сигналов, т.е. возникает интерференция. Возможными вариантами борьбы с этой проблемой является использованиеSmart Antena , либо применение технологии кодирования dirty paper («грязная бумага»). Рассмотрим технологию dirty paper подробнее. Принцип ее действия основан на анализе текущего состояния радиоэфира и числа активных абонентов. Единственный (первый) абонент передает свои данные к базовой станции без кодирования, изменения своих данных, т.к. интерференции от других абонентов нет. Второй абонент будет кодировать, т.е. изменять энергию своего сигнала так чтобы не помешать первому и не подвергнуть свой сигнал влиянию от первого. Последующие абоненты, добавляемые в систему, также будут следовать этому принципу, и опираться на число активных абонентов и эффект, оказываемый передаваемыми ими сигналами.

Применение MIMO

Технология MIMO в последнее десятилетие является одним из самых актуальных способов увеличения пропускной способности и емкости беспроводных систем связи. Рассмотрим некоторые примеры использования MIMO в различных системах связи.

Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала. 802.11n используется не только в системах точка/многоточка (Point/Multipoint) – наиболее привычной нише использования технологии WiFi для организации LAN (Local Area Network), но и для организации соединений типа точка/точка которые используются для организации магистральных каналов связи со скоростью несколько сотен Мбит/сек и позволяющих передавать данные на десятки километров (до 50 км).

Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа. Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию. Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных), т.к. обладает рядом присущих сотовым сетям признаков: роуминг , хэндовер , голосовые соединения. В случае мобильного использования, теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.

Наибольший интерес представляет использование технологии MIMO в системах сотовой связи. Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандартеUMTS , в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.

Системы , а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю соты . При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.

Таким образом, технология MIMO находит применение практически во всех системах беспроводной передачи данных. Причем потенциал ее не исчерпан. Уже сейчас разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Это в будущем позволит добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.

Многопользовательская MIMO представляет собой неотъемлемую часть стандарта 802.11 ас. Но до сих пор еще не было устройств, поддерживающих новый вид многоантенной технологии. WLAN-роутеры стандарта 802.11 ас прежнего поколения обозначались как оборудование Wave 1. Только с Wave 2 вводится многопользовательская технология MIMO (MU-MIMO), и во главе этой второй волны устройств идет .

Стандарт WLAN 802.11b 802.11g/a 802.11n 802.11ас 802.11ах*
Скорость передачи дан­ных на поток, Мбит/с 11 54 150 866 не менее 3500
Диапазон частот, ГГц 2,4 2,4/5 2,4 и 5 5 между 1 и 6
Ширина канала, МГц 20 20/20 20 и 40 20,40,80 или 160 пока не определена
Технология антенны

Single Input Single Output (один вход- один выход)

MIMO: Multiple Input Multiple Output (многоканальный вход- многоканальный выход) MIMO/MU-MIMO (многопользова­тельская система MIMO)

Максимальное число

пространственных

1 1 4 8 пока не определено
Поддержка технологии формирования луча

■ да □ нет

Поскольку многопользовательская технология MIMO передает сигнал одновременно на несколько устройств, соответствующим образом расширяется протокол передачи в части формирования заголовков блоков данных: вместо того чтобы передавать несколько пространственно разделенных потоков для одного клиента, многопользовательская технология MIMO распределяет передачу для каждого пользователя по отдельности, равно как и кодирование. Одинаковым остается распределение полосы частот и кодирование.

Single User (однопользовательская) Если четыре устройства делят между собой одну сеть WLAN, то роутер с конфигурацией 4×4:4 MIMO передает четыре пространственных потока данных, но всегда только на одно и то же устройство. Устройства и гаджеты обслуживаются попеременно. Multi User (многопользовательская) При поддержке многопользовательской MIMO (Multi User MIMO) очередей из устройств, ожидающих доступа к ресурсам WLAN- роутера, не образуется. Ноутбук, планшет, телефон и телевизор обеспечиваются данными одновременно.

Сеть WLAN похожа на оживленную автотрассу: в зависимости от времени суток помимо ПК и ноутбуков к этому движению подключаются планшеты, смартфоны, телевизор и игровые консоли. В среднестатистическом домохозяйстве имеется более пяти устройств, подсоединяемых к Интернету по сети WLAN, и их количество постоянно растет. Со скоростью 11 Мбит/с, которая предусматривается в рамках основного стандарта IEEE 802.11b, веб-серфинг и загрузка данных требуют большого терпения, ведь роутер в каждый конкретный момент времени может быть соединен только с одним устройством. Если радиосвязь используется сразу тремя устройствами, то каждый клиент получает только треть продолжительности сеанса связи, а две трети времени тратится на ожидание. Хотя сети WLAN новейшего стандарта IEEE 802.11ac обеспечивают передачу данных на скоростях до 1 Гбит/с, в них тоже существует проблема падения скорости из-за очередей. Но уже следующее поколение устройств (802.11ac Wave 2) обещает более высокую производительность для радиосетей с несколькими активными устройствами.

Для лучшего понимания сути нововведений следует сначала вспомнить, какие изменения происходили с сетями WLAN в недавнем прошлом. Одним из самых эффективных приемов увеличения скорости передачи данных, начиная со стандарта IEEE 802.1In, является технология MIMO (Multiple Input Multiple Output: многоканальный вход - многоканальный выход). Она подразумевает использование нескольких радиоантенн для параллельной передачи потоков данных. Если, например, через сеть WLAN передается один видеофайл и используется MIMO-роутер с тремя антеннами, каждое передающее устройство в идеальном случае (при наличии трех антенн у приемника) отправит треть файла.

Рост затрат с каждой антенной

В стандарте IEEE 802.11n максимальная скорость передачи данных для каждого отдельного потока вместе со служебной информацией достигает 150 Мбит/с. Устройства с четырьмя антеннами, таким образом, способны передавать данные со скоростью до 600 Мбит/с. Актуальный стандарт IEEE 802.11ac теоретически выходит примерно на 6900 Мбит/с. Помимо широких радиоканалов и улучшенной модуляции новым стандартом предусмотрено использование до восьми потоков MIMO.

Но одно только увеличение числа антенн не гарантирует многократного ускорения передачи данных. Наоборот, с четырьмя антеннами очень сильно возрастает объем служебных данных, а также становится более затратным процесс обнаружения коллизий радиосигналов. Чтобы использование большего числа антенн себя оправдало, технология MIMO продолжает совершенствоваться. Прежнюю MIMO для различения правильнее называть одно-пользовательской MIMO (Single User MIMO). Хотя она обеспечивает одновременную передачу нескольких пространственных потоков, как говорилось ранее, но всегда только по одному адресу. Такой недостаток теперь устраняется с помощью многопользовательской MIMO. С этой технологией роутеры WLAN могут одновременно передавать сигнал четырем клиентам. Устройство с восемью антеннами может, например, использовать четыре, чтобы обеспечить ноутбук и параллельно с помощью двух других - планшет и смартфон.

MIMO – точный направленный сигнал

Чтобы маршрутизатор мог одновременно направлять пакеты WLAN различным клиентам, ему нужна информация о том, где расположены клиенты. Для этого в первую очередь по всем направлениям отсылаются тестовые пакеты. Клиенты отвечают на эти пакеты, и базовая станция сохраняет данные о силе сигнала. Технология формирования лучей является одним из важнейших помощников MU MIMO. Хотя ее поддержка уже предусмотрена стандартом IEEE 802.11n, в IEEE 802.11ac она была усовершенствована. Ее суть сводится к установлению оптимального направления для отправки радиосигнала клиентам. Базовая станция специально задает для каждого радиосигнала оптимальную направленность передающей антенны. Для многопользовательского режима поиск оптимального пути сигнала особенно важен, ведь перемена места только одного клиента может изменить все пути передачи и нарушить пропускную способность всей сети WLAN. Поэтому каждые 10 мс производится анализ канала.

Для сравнения, однопользовательская MIMO производит анализ только каждые 100 мс. Многопользовательская MIMO может одновременно обслуживать четырех клиентов, при этом каждый клиент может параллельно принимать до четырех потоков данных, что в сумме дает 16 потоков. Для этого многопользовательской MIMO требуются новые WLAN-роутеры, поскольку вырастает потребность в вычислительной мощности.

Одной из самых серьезных проблем многопользовательской MIMO являются интерференции между клиентами. Хотя загруженность канала часто замеряется, этого недостаточно. При необходимости одним фреймам отдается приоритет, а другие, наоборот, придерживаются. Для этого 802.11ac использует различные очереди, которые с разной скоростью производят обработку в зависимости от типа пакета данных, отдавая предпочтение, например, видеопакетам.

Технология MIMO сыграла огромную роль в развитии WiFi. Несколько лет назад невозможно было представить и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно - IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в .

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO - это многопотоковая передача данных . Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 - это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование . За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 - a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output - его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт - также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально - практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания . Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании - (базовая станция), (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX . Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно - недорого. В отличие от аналогичного оборудования, используемого в WiMAX - сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами.


сайт

Для решения проблем с уровнем приема сигнала интернета и мобильной связи можно сделать своими руками MIMO антенну 4g LTE. Технология MIMO позволяет повысить пропускную способность и передавать больше данных, тем самым увеличить скорость работы. Этот эффект достигается за счет использования нескольких устройств для приема сигнала. Не зря название MIMO, или Multiple Input Multiple Output, переводится как множественные входы, множественные выходы. Используя эту технологию, можно обеспечить значительный прирост в скорости передачи данных у конечного потребителя.

Проведя распараллеливание потока на несколько каналов на входе, можно пустить сигнал по нескольким направлениям и также принять все эти данные на выходе. Двух-, трех- и даже восьмикратное увеличение достигается за счет использования определенных конфигураций и количества антенн MIMO 3G или 4G. Более того, можно пускать закодированную информацию с задержкой и восстанавливать данные при приеме. Для того чтобы понять, как работают такие устройства, рассмотрим принципиальную схему передачи радиосигнала.

Прием и отправка информации в линиях беспроводной связи

Радиоволны при перемещении в пространстве наталкиваются на разные препятствия в виде домов, деревьев и других сооружений. Препятствия на пути могут отражать или поглощать волну, а также делать это частично. Иногда сигнал разбивается на несколько составных частей. На характер взаимодействий волны и преград на пути оказывают влияние материал поверхности, частота сигнала и множество других факторов. Отражение в процессе передачи приводит к тому, что появляются временные задержки. Кроме того, из-за всех этих взаимодействий до конечного потребителя доходит только часть отправленных от приемника волн. Поэтому одной из главных проблем беспроводных сетей является многолучевое распространение сигнала.

Для ее решения используются следующие технологии:

  • Разнесенный прием (Receive Diversity) позволяет принимать сигнал сразу несколькими, а не одним устройством. Таким образом, непринятые одной антенной волны принимаются другой. Используется принцип одного выхода и нескольких входов, или SIMO (Single Input Multiple Output);
  • Разнесенная передача (Tx Diversity) основана на том, что сигнал отправляется с нескольких антенн, а принимается одной, то есть множественный выход и одни вход, или MISO (Multiple Input Single Output), как панельная антенна 3G;
  • Пространственное уплотнение (Spatial Multiplexing) – разбивание выходного потока на несколько составляющих и прием через несколько устройств, или MIMO. Антенна получает сигнал, предназначенный и для других приемных устройств тоже. Используя матрицу передачи и всю полученную информацию, сигнал максимально восстанавливается.

Чтобы определить максимальную пропускную способность – С, используется формула:

С= M B log2(1 + S/N), где:

  • C – пропускная способность канала;
  • M – количество независимых потоков данных;
  • B – ширина канала;
  • S/N – соотношение сигнал/шум.

Для сотовой связи 4G, а именно LTE MIMO, возможно использование 8Х8, что позволяет добиться скорости до 300 Мбит/сек. Даже на значительном удалении от станции сигнал будет устойчивым. Сегодня больше распространены MIMO 2Х2. Всегда для 4G количество каналов должно быть четным.

Антенны могут располагаться в одной поверхности или быть вертикально разнесены. Во втором случае важно точно выдерживать расхождения по градусам, указанные в схеме.

Антенна MIMO

Как сделать антенну проще всего? Рассмотрим оборудование для получения сигнала 4G лте 800, в основе которого лежит антенна Харченко – синфазная решетка из ромбов. Эта конструкция была придумана К.П. Харченко еще в шестидесятых годах прошлого года. Основное достоинство этого оборудования состоит в том, что собрать антенну просто, а все параметры можно посчитать по многочисленным онлайн-калькуляторам в сети. За счет необычной схемы устройство редко нуждается в настройке. Если необходимо сделать оборудование для улучшения сигнала 3g своими руками, можно использовать одну антенну Харченко.

В MIMO технологии используется четное число антенн, у нас их будет 2 антенны МИМО своими руками: Downlink – от спутника до приемного устройства, и для отправки – Uplink. Если смотреть на усредненные показатели, что можно использовать 2 антенны на 802 и 843 мГц, подключение будет идти 50-омным коаксиальным кабелем.

Для 802 мГц длина в миллиметрах составляет:

  • L1 – 93,5,
  • L2 – 90,
  • L3 – 250,
  • L4 – 136,5,
  • L5 – 4,8,
  • H – 373,
  • В – 373,
  • D 45,5.

Для 843 мГц длина в миллиметрах составляет:

  • L1 – 90,
  • L2 – 96,
  • L3 – 238,
  • L4 – 129,5,
  • L5 – 4,6,
  • H – 373,
  • В – 355,
  • D 43.

Важно! Количество потоков равно либо меньше минимального числа антенн на приеме или на выходе. При использовании MIMO 4×4 можно работать в диапазоне от 1 до 4 потоков, если же речь идет о MIMO 4×2, то потоков может быть только 1 или 2.

Для работы потребуются:

  • решетка или кусок фанеры, обклеенной фольгой либо фольгированным скотчем, или оцинкованная сталь (у нас используется последний вариант):
  • проволока сечением 4 мм2;
  • кабель;
  • деревянная доска длиной не менее 1,90 м;
  • полипропиленовые трубы;
  • нейлоновые хомуты;
  • баллончик автоэмали;
  • F-коннектор – 2 штуки;
  • пигтейл кабель F-CRC9 – 2 штуки;
  • клей Поксипол;
  • дрель;
  • пассатижи;
  • рулетка и линейка.

Последовательность действий:

  1. Выполняем каркас в форме буквы П. Для этого распиливаем доску на три части. Самая длинная доска (верхняя часть буквы) должна составлять 1 м 20 см, а боковые – по 35 см. Можно выпилить все части каркаса из разных досок;
  2. Вырезаем 2 куска из листа оцинкованной стали размерам 375х375 см. Фиксируем основания с помощью дюбелей на каркасе строго под углом 45 градусов;
  3. В центре каждого основания высверливаем отверстия для кабеля, которые будут идти к модему. Диаметр отверстий – 7 мм. Делаем разметки для крепления антенны;
  4. Разрезаем полипропиленовую трубу на несколько частей: 3 части – 44,5 мм и 3 – 42 мм. Эти размеры напрямую связаны с центром проволоки;

Обратите внимание! Для устойчивого и качественного приема важно, чтобы технология пространственного уплотнения поддерживалась на передающей станции, а антенна использовалась для 4G модема.

  1. Начнем со сборки антенны на 802 мГц;
  2. Согласно чертежу, располагаем трубы на куски оцинкованных листов и приклеиваем Поксиполом. Полипропиленовые трубки и клей являются диэлектриками, поэтому при контакте антенны и этих частей сигнал не будет искажаться;
  3. Теперь выполняем саму антенну из проволоки по размерам, указанным в чертеже. Делаем загибы, используя пассатижи. В полученных параметрах надо убавить по 4 мм, из которых 1 мм идет на погрешность по центру, а 3 мм – при загибе пассатижами;
  4. Далее зачищаем кабель и центральную жилу, припаиваем к концам проволоки, а оплетку – к изгибу;
  5. Протаскиваем кабель через полипропиленовую трубу в отверстие, которое мы просверлили заранее;
  6. Теперь проверяем все размеры, а при необходимости выравниваем антенну;
  7. Углы ромбов фиксируем на полипропиленовых держателях с помощью Поксипола. Для того чтобы проволока закрепилась, следует поставить сверху какой-либо груз;

  1. Замеряем расстояние между концами антенны и изгибом проволоки в середине конструкции, оно должно быть 4,8-5 мм. 4,5 мм – зазор между проволокой и изгибом, подогнать его сложно, но это можно сделать маникюрными ножницами, разместив их в середине. Теперь крепим середину антенны с помощью клея;
  2. Последовательность сборки антенны MIMO своими руками на 843 мГц точно такая же. Важно учесть, что антенны должны располагаться под углом в 90 градусов друг к другу. Х-поляризация дает больший эффект, чем вертикальная. Расположение антенн подобным образом создает для них равные условия;
  3. Чтобы кабели не гуляли в отверстиях, затягиваем их с обратно стороны нейлоновыми хомутами и приклеиваем;
  4. Теперь выполняем контрольные замеры по схеме и при необходимости корректируем;
  5. Чтобы избежать окисления, покрываем проволоку и оцинкованные листы сверху эмалью;
  6. Кабели через F-коннекторы выводим на пигтейл и уже затем на модем;
  7. Проводим тестирование системы. Создание антенны МИМО 4G своими руками окончено.

Для того чтобы отладить работу устройства, следует правильно расположить конструкцию. Общие правила говорят, что антенну лучше вывести на улицу и поднять как можно выше. Кроме того, антенна должна быть направлена строго в сторону раздающей станции. Однако не всегда эти советы срабатывают. Чем выше будет поднята антенна MIMO, тем больше кабеля потребуется проложить до соединения модема своими руками, но в этом случае часть сигнала будет гаситься помехами, вызванными этим самым кабелем. Не всегда установка на улице благоприятна для устройства. Если от окисления можно избавиться с помощью покраски, то нельзя не учитывать, что геометрию конструкции могут нарушить порывы ветра. Кроме того, по направлению в сторону станции могут быть различные препятствия, которые будут гасить сигнал.

Для отладки антенны иногда приходится попробовать несколько вариантов установки, но потом это оборудование будет работать и в 3G 4G LTE.

Видео

MIMO (Multiple Input Multiple Output, многоканальный вход - многоканальный выход) - метод скоординированного использования нескольких радиоантенн в беспроводных сетевых коммуникациях, распространенный в современных домашних широкополосных маршрутизаторах и в сетях сотовой связи LTE и WiMAX.

Как это работает?

Маршрутизаторы Wi-Fi с MIMO-технологией используют те же сетевые протоколы, что и обычные одноканальные. Они обеспечивают более высокую производительность за счет повышения эффективности передачи и приема данных по линии беспроводной связи. В частности, сетевой трафик между клиентами и маршрутизатором организуется в отдельные потоки, передаваемые параллельно, с последующим их восстановлением принимающим устройством.

Технология MIMO может увеличить пропускную способность, диапазон и надежность передачи при высоком риске помех со стороны другого беспроводного оборудования.

Применение в сетях Wi-Fi

Технология MIMO включена в стандарт с версии 802.11n. Ее использование повышает производительность и доступность сетевых соединений по сравнению с обычными маршрутизаторами.

Количество антенн может варьироваться. Например, MIMO 2x2 предусматривает наличие двух антенн и двух передатчиков, способных осуществлять прием и передачу по двум каналам.

Чтобы воспользоваться этой технологией и реализовать ее преимущества, клиентское устройство и маршрутизатор должны установить между собой MIMO-соединение. В документации к используемому оборудованию должно быть указано, поддерживает ли оно такую возможность. Другого простого способа проверить, применяется ли в сетевом соединении данная технология, нет.

SU-MIMO и MU-MIMO

Первое поколение технологии, представленное в стандарте 802.11n, поддерживало однопользовательский (SU) метод. По сравнению с традиционными решениями, когда все антенны маршрутизатора должны координироваться для связи с одним клиентским устройством, SU-MIMO позволяет распределять каждую из них между разным оборудованием.

Многопользовательская (MU) технология MIMO была создана для использования в сетях Wi-Fi 802.11ac на частоте 5 ГГц. Если предыдущий стандарт требовал, чтобы маршрутизаторы управляли своими клиентскими подключениями поочередно (по одному за раз), антенны MU-MIMO могут обеспечивать связь с несколькими клиентами параллельно. улучшает производительность соединений. Однако даже если маршрутизатор 802.11ac имеет необходимую аппаратную поддержку технологии MIMO, есть и другие ограничения:

  • поддерживается ограниченное количество одновременных клиентских подключений (2-4) в зависимости от конфигурации антенны;
  • координация антенн обеспечивается только в одном направлении - от маршрутизатора до клиента.

MIMO и сотовая связь

Технология используется в разных типах беспроводных сетей. Она все чаще находит применение в сотовой связи (4G и 5G) в нескольких формах:

  • Network MIMO - координированная передача сигнала между базовыми станциями;
  • Massive MIMO - использование большого количества (сотен) антенн;
  • миллиметровые волны - задействование сверхвысокочастотных полос, в которых пропускная способность больше, чем в диапазонах, лицензированных для 3G и 4G.

Многопользовательская технология

Чтобы понять, как работает MU-MIMO, следует рассмотреть, как обрабатывает пакеты данных традиционный беспроводной маршрутизатор. Он хорошо справляется с отправкой и приемом данных, но только в одном направлении. Другими словами, он может поддерживать коммуникацию только с одним устройством одновременно. Например, если загружается видео, то нельзя в то же время транслировать на консоль онлайн-видеоигру.

Пользователь может запускать несколько устройств в сети Wi-Fi, и маршрутизатор очень быстро по очереди переправляет к ним биты данных. Однако в одно и то же время он может обращаться только к одному устройству, что является основной причиной снижения качества соединения, если пропускная способность Wi-Fi слишком низкая.

Поскольку это работает, то внимание на себя обращает мало. Тем не менее эффективность работы маршрутизатора, который передает данные на несколько устройств одновременно, можно повысить. При этом он станет быстрее работать и обеспечит более интересные сетевые конфигурации. Вот почему появились разработки, подобные MU-MIMO, которые в конечном итоге были включены в современные стандарты беспроводной связи. Эти разработки позволяют передовым маршрутизаторам взаимодействовать сразу с несколькими устройствами.

Краткая история: SU против MU

Одно- и многопользовательские MIMO представляют собой разные способы коммуникации маршрутизаторов с несколькими устройствами. Первый из них старше. Стандарт SU разрешал отправку и получение данных сразу по нескольким потокам в зависимости от имеющегося количества антенн, каждая из которых могла работать с различными устройствами. SU был включен в обновление 802.11n 2007 года и начал постепенно внедряться в новые линейки продуктов.

Однако у SU-MIMO были ограничения в дополнение к требованиям к антенне. Хотя может быть подключено несколько устройств, они по-прежнему имеют дело с маршрутизатором, который может работать только с одним за раз. Скорость передачи данных увеличилась, помехи стали меньшей проблемой, но возможностей для улучшения осталось много.

MU-MIMO является стандартом, который развился из SU-MIMO и SDMA (множественного доступа с пространственным разделением каналов). Технология позволяет базовой станции взаимодействовать с несколькими устройствами, используя отдельный поток для каждого из них, как будто все они имеют свой собственный маршрутизатор.

В конечном итоге поддержка MU была добавлена в обновление стандарта 802.11ac в 2013 г. После нескольких лет разработок производители начали включать эту функцию в свои продукты.

Преимущества MU-MIMO

Это захватывающая технология, поскольку она оказывает заметное влияние на повседневное использование Wi-Fi без прямого изменения пропускной способности или других ключевых параметров беспроводного соединения. Сети становятся намного эффективнее.

Для обеспечения стабильного соединения с ноутбуком, телефоном, планшетом или компьютером стандарт не требует наличия у маршрутизатора нескольких антенн. Каждое такое устройство может не делиться своим каналом MIMO с другими. Это особенно заметно при потоковой передаче видео или выполнении других сложных задач. Скорость работы в Интернете субъективно повышается, и соединение устанавливается надежнее, хотя на самом деле становится более разумной организация сети. Также повышается число одновременно обслуживаемых устройств.

Ограничения MU-MIMO

Многопользовательская технология множественного доступа имеет и ряд ограничений, о которых стоит упомянуть. Существующие стандарты поддерживают 4 устройства, но позволяют добавить больше, и им придется делиться потоком, что возвращает к проблемам SU-MIMO. Технология в основном используется в нисходящих каналах связи и ограничена, когда дело доходит до исходящих. Кроме того, маршрутизатор MU-MIMO должен иметь больше информации об устройствах и состоянии каналов, чем требовали предыдущие стандарты. Это усложняет управление и устранение неполадок в беспроводных сетях.

MU-MIMO также является направленной технологией. Это означает, что 2 устройства, расположенные рядом, не могут одновременно использовать разные каналы. Например, если муж смотрит онлайн-трансляцию по телевизору, а рядом его жена передает игру PS4 на свою Vita через Remote Play, им все равно придется делиться пропускной способностью. Маршрутизатор может предоставлять дискретные потоки только устройствам, которые расположены в разных направлениях.

Massive MIMO

По мере продвижения в сторону беспроводных сетей пятого поколения (5G) рост числа смартфонов и новых применений привел к 100-кратному увеличению их требуемой пропускной способности по сравнению с LTE. Новая технология Massive MIMO, которой в последние годы уделяется много внимания, призвана значительно увеличить показатели эффективности телекоммуникационных сетей до беспрецедентных уровней. При дефиците и дороговизне доступных ресурсов операторов привлекает возможность увеличить пропускную способность в полосах частот ниже 6 ГГц.

Несмотря на значительный прогресс, Massive MIMO далек от совершенства. Технология по-прежнему активно исследуется как в академических кругах, так и в промышленности, где инженеры стремятся достичь теоретических результатов с помощью коммерчески приемлемых решений.

Massive MIMO может помочь в решении двух ключевых проблем - пропускной способности и охвата. Для операторов мобильной связи частотный диапазон остается дефицитным и относительно дорогостоящим ресурсом, но является ключевым условием для повышения скорости передачи сигнала. В городах интервал между базовыми станциями обусловлен пропускной способностью, а не охватом, что требует развертывания большого их количества и приводит к дополнительным расходам. Massive MIMO позволяет увеличить емкость уже существующей сети. В областях, где развертывание базовых станций обусловлено охватом, технология позволяет увеличить радиус их действия.

Концепция

Massive MIMO кардинально меняет текущую практику, используя очень большое количество когерентно и адаптивно работающих сервисных антенн 4G (сотни или тысячи). Это помогает фокусировать передачу и прием энергии сигнала в меньших областях пространства, значительно улучшая производительность и энергоэффективность, особенно в сочетании с одновременным планированием большого количества пользовательских терминалов (десятков или сотен). Метод изначально предполагался для дуплексной передачи с временным разделением (TDD), но потенциально может применяться также в режиме дуплексного (PDD) частотного разделения.

Технология MIMO: достоинства и недостатки

Преимуществами метода являются широкое использование недорогих маломощных компонентов, снижение латентности, упрощение уровня управления доступом (MAC), устойчивость к случайным и преднамеренным помехам. Ожидаемая пропускная способность зависит от среды распространения, обеспечивающей асимптотически ортогональные каналы к терминалам, и эксперименты до сих пор не выявили никаких ограничений в этом отношении.

Однако вместе с устранением многих проблем появляются новые, требующие неотложного решения. Например, в системах MIMO необходимо обеспечить эффективную совместную работу множества недорогих компонентов малой точности, собирать данные о состоянии канала и распределять ресурсы для вновь подключенных терминалов. Также требуется использовать дополнительные степени свободы, обеспечиваемые избытком сервисных антенн, снизить внутреннее энергопотребление для достижения общей энергоэффективности и найти новые сценарии развертывания.

Рост количества 4G-антенн, участвующих в реализации MIMO, обычно требует посещения каждой базовой станции для изменения конфигурации и проводки. Первоначальное развертывание сетей LTE потребовало установки нового оборудования. Это дало возможность произвести конфигурацию MIMO 2x2 исходного стандарта LTE. Дальнейшие изменения базовых станций производятся только в крайних случаях, а реализации более высокого порядка зависят от операционной среды. Еще одна проблема заключается в том, что операция MIMO приводит к совершенно другому поведению в сети, чем предыдущие системы, что создает некоторую неопределенность планирования. Поэтому операторы склонны сначала использовать другие разработки, особенно если они могут быть развернуты путем обновления программного обеспечения.



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные