Файловая система NFS. Как создать NFS шару с помощью Powershell. Функции, действующие на кэширование атрибутов при монтировании NFS

Когда речь идет о компьютерных сетях, зачастую можно услышать упоминание NFS. Что такое означает эта аббревиатура?

Это протокол распределенной файловой системы, первоначально разработанный компанией Sun Microsystems в 1984 году, позволяющий пользователю на клиентском компьютере получать доступ к файлам через сеть, подобно доступу к локальному хранилищу. NFS, как и многие другие протоколы, основывается на системе Open Network Computing Remote Procedure Call (ONC RPC).

Другими словами, что такое NFS? Это открытый стандарт, определенный в Request for Comments (RFC), позволяющий любому реализовать протокол.

Версии и вариации

Изобретатель использовал только первую версию для собственных экспериментальных целей. Когда команда разработчиков добавила существенные изменения в первоначальную NFS и выпустила ее за пределами авторства Sun, они обозначили новую версию как v2, чтобы можно было протестировать взаимодействие между дистрибутивами и создать резервный вариант.

NFS v2

Версия 2 первоначально работала только по протоколу User Datagram Protocol (UDP). Ее разработчики хотели сохранить серверную сторону без блокировки, реализованной за пределами основного протокола.

Интерфейс виртуальной файловой системы позволяет выполнять модульную реализацию, отраженную в простом протоколе. К февралю 1986 года были продемонстрированы решения для таких операционных систем, как System V release 2, DOS и VAX/VMS с использованием Eunice. NFS v2 позволял считывать только первые 2 ГБ файла из-за 32-разрядных ограничений.

NFS v3

Первое предложение по разработке NFS версии 3 в Sun Microsystems было озвучено вскоре после выпуска второго дистрибутива. Главной мотивацией была попытка смягчить проблему производительности синхронной записи. К июлю 1992 года практические доработки позволили решить многие недостатки NFS версии 2, оставив при этом лишь недостаточную поддержку файлов (64-разрядные размеры и смещения файлов).

  • поддержку 64-битных размеров и смещений файлов для обработки данных размером более 2 гигабайт (ГБ);
  • поддержку асинхронной записи на сервере для повышения производительности;
  • дополнительные атрибуты файлов во многих ответах, позволяющие избежать необходимости их повторного извлечения;
  • операцию READDIRPLUS для получения данных и атрибутов вместе с именами файлов при сканировании каталога;
  • многие другие улучшения.

Во время введения версии 3 поддержка TCP как протокола транспортного уровня начала увеличиваться. Использование TCP в качестве средства передачи данных, выполненного с использованием NFS через WAN, стало позволять передавать большие размеры файлов для просмотра и записи. Благодаря этому разработчики смогли преодолеть пределы ограничений в 8 КБ, налагаемые протоколом пользовательских дейтаграмм (UDP).

Что такое NFS v4?

Версия 4, разработанная под влиянием Эндрской файловой системы (AFS) и блока сообщений сервера (SMB, также называемая CIFS), включает в себя повышение производительности, обеспечивает лучшую безопасность и вводит протокол с соблюдением установленных условий.

Версия 4 стала первым дистрибутивом, разработанным в Целевой группе Internet Engineering Task Force (IETF) после того, как Sun Microsystems передала разработку протоколов сторонним специалистам.

NFS версия 4.1 направлена ​​на предоставление поддержки протокола для использования кластерных развертываний серверов, включая возможность предоставления масштабируемого параллельного доступа к файлам, распределенным между несколькими серверами (расширение pNFS).

Новейший протокол файловой системы - NFS 4.2 (RFC 7862) - был официально выпущен в ноябре 2016 года.

Другие расширения

С развитием стандарта появились и соответствующие инструменты для работы с ним. Так, WebNFS, расширение для версий 2 и 3, позволяет протоколу сетевого доступа к файловым системам легче интегрироваться в веб-браузеры и активировать работу через брандмауэры.

Различные протоколы сторонних групп стали также ассоциироваться с NFS. Из них наиболее известными выступают:

  • Network Lock Manager (NLM) с поддержкой протокола байтов (добавлен для поддержки API-блокировки файлов UNIX System V);
  • удаленной квоты (RQUOTAD), который позволяет пользователям NFS просматривать квоты на хранение данных на серверах NFS;
  • NFS через RDMA - адаптация NFS, которая использует дистанционный прямой доступ к памяти (RDMA) в качестве средства передачи;
  • NFS-Ganesha - сервер NFS, работающий в пользовательском пространстве и поддерживающий CephFS FSAL (уровень абстракции файловой системы) с использованием libcephfs.

Платформы

Network File System часто используется с операционными системами Unix (такими как Solaris, AIX, HP-UX), MacOS от Apple и Unix-подобными ОС (такими как Linux и FreeBSD).

Он также доступен для таких платформ, как Acorn RISC OS, OpenVMS, MS-DOS, Microsoft Windows, Novell NetWare и IBM AS/400.

Альтернативные протоколы удаленного доступа к файлам включают в себя блок сообщений сервера (SMB, также называемый CIFS), протокол передачи Apple (AFP), базовый протокол NetWare (NCP) и файловую систему сервера OS/400 (QFileSvr.400).

Это связано с требованиями NFS, которые ориентированы по большей части на Unix-подобные «оболочки».

При этом протоколы SMB и NetWare (NCP) применяются чаще, чем NFS, в системах под управлением Microsoft Windows. AFP наиболее широко распространен в платформах Apple Macintosh, а QFileSvr.400 наиболее часто встречается в OS/400.

Типичная реализация

Предполагая типичный сценарий в стиле Unix, в котором одному компьютеру (клиенту) нужен доступ к данным, хранящимся на другом (сервер NFS):

  • Сервер реализует процессы Network File System, запущенные по умолчанию как nfsd, чтобы сделать свои данные общедоступными для клиентов. Администратор сервера определяет, как экспортировать имена и параметры каталогов, обычно используя файл конфигурации/etc/exports и команду exportfs.
  • Администрирование безопасности сервера гарантирует, что он сможет распознавать и утверждать проверенного клиента. Конфигурация его сети гарантирует, что соответствующие клиенты могут вести переговоры с ним через любую систему брандмауэра.
  • Клиентская машина запрашивает доступ к экспортированным данным, как правило, путем выдачи соответствующей команды. Она запрашивает сервер (rpcbind), который использует порт NFS, и впоследствии подключается к нему.
  • Если все происходит без ошибок, пользователи на клиентской машине смогут просматривать и взаимодействовать с установленными файловыми системами на сервере в пределах разрешенных параметров.

Следует обратить внимание и на то, что автоматизация процесса Network File System также может иметь место - возможно, с использованием etc/fstab и/или иных подобных средств.

Развитие на сегодняшний день

К 21-му столетию протоколы-конкуренты DFS и AFS не достигли какого-либо крупного коммерческого успеха по сравнению с Network File System. Компания IBM, которая ранее приобрела все коммерческие права на вышеуказанные технологии, безвозмездно передала большую часть исходного кода AFS сообществу свободных разработчиков программного обеспечения в 2000 году. Проект Open AFS существует и в наши дни. В начале 2005 года IBM объявила о завершении продаж AFS и DFS.

В свою очередь, в январе 2010 года компания Panasas предложила NFS v 4.1 на основе технологии, позволяющей улучшить возможности параллельного доступа к данным. Протокол Network File System v 4.1 определяет метод разделения метаданных файловой системы из местоположения определенных файлов. Таким образом, он выходит за рамки простого разделения имен/данных.

Что такое NFS этой версии на практике? Вышеуказанная особенность отличает его от традиционного протокола, который содержит имена файлов и их данных под одной привязкой к серверу. При реализации Network File System v 4.1 некоторые файлы могут распределяться между многоузловыми серверами, однако участие клиента в разделении метаданных и данных ограничено.

При реализации четвертого дистрибутива протокола NFS-сервер представляет собой набор серверных ресурсов или компонентов; предполагается, что они контролируются сервером метаданных.

Клиент по-прежнему обращается к одному серверу метаданных для обхода или взаимодействия с пространством имен. Когда он перемещает файлы на сервер и с него, он может напрямую взаимодействовать с набором данных, принадлежащих группе NFS.

NFS
Уровень (по модели OSI): Прикладной
Семейство: стек протоколов TCP/IP
Порт/ID: 67, 68/UDP
Назначение протокола: Получение сетевой конфигурации
Спецификация: RFC 2131
Основные реализации (серверы): dhcpd, ISC DHCP Server, Infoblox
Вступил в силу с: 1990

NFS абстрагирован от типов файловых систем как сервера, так и клиента, существует множество реализаций NFS-серверов и клиентов для различных операционных систем и аппаратных архитектур. Наиболее зрелая версия NFS - v.4, поддерживающая различные средства аутентификации (в частности, Kerberos и LIPKEY с использованием протокола RPCSEC GSS) и списков контроля доступа (как POSIX, так и Windows-типов).

Общая организация NFS

NFS предоставляет клиентам прозрачный доступ к файлам и файловой системе сервера. В отличие от FTP , протокол NFS осуществляет доступ только к тем частям файла, к которым обратился процесс, и основное достоинство его в том, что он делает этот доступ прозрачным. Это означает, что любое приложение клиента, которое может работать с локальным файлом, с таким же успехом может работать и с NFS файлом, без каких либо модификаций самой программы.

NFS-клиенты получают доступ к файлам на NFS-сервере путём отправки RPC-запросов на сервер. Это может быть реализовано с использованием обычных пользовательских процессов - а именно, NFS-клиент может быть пользовательским процессом, который осуществляет конкретные RPC-вызовы на сервер, который так же может быть пользовательским процессом.

Важной частью последней версии стандарта NFS (v4.1) стала спецификация pNFS, нацеленная на обеспечение распараллеленной реализации общего доступа к файлам, увеличивающая скорость передачи данных пропорционально размерам и степени параллелизма системы.

История

Протокол NFS имеет в своей истории 4 версии.

Первая версия применялась только для внутреннего использования в Sun в экспериментальных целях. Версия 2 выпущена в марте 1989 года, первоначально полностью работала по протоколу UDP. Разработчики решили не хранить данных о внутреннем состоянии внутри протокола, как пример, блокировка, реализованная вне базового протокола. Люди, вовлечённые в создание NFS версии 2 - Расти Сэндберг (Rusty Sandberg,) Боб Лайон (Bob Lyon), Билл Джой и Стив Клейман (Steve Kleiman).

NFSv3 вышла в июне 1995 года, в ней добавлена поддержка дескрипторов файлов переменного размера до 64 байт (в версии 2 - массив фиксированного размера 32 байта), снято ограничение на 8192 байта в RPC-вызовах чтения и записи (тем самым, размер передаваемого блока в вызовах ограничен только пределом для UDP-датаграммы - 65535 байт), реализована поддержка файлов больших размеров, поддержаны асинхронные вызовы операций записи, к процедурам READ и WRITE добавлены вызовы ACCESS (проверка прав доступа к файлу), MKNOD (создание специального файла Unix), READDIRPLUS (возвращает имена файлов в директории вместе с их атрибутами), FSINFO (возвращает статистическую информацию о файловой системе), FSSTAT (возвращает динамическую информацию о файловой системе), PATHCONF (возвращает POSIX.1-информацию о файле) и COMMIT (передает ранее сделанные асинхронные записи на постоянное хранение). На момент введения версии 3 отмечен рост популярности в среде разработчиков протокола TCP. Некоторые независимые разработчики самостоятельно добавили поддержку протокола TCP для NFS версии 2 в качестве транспортного, Sun Microsystems добавили поддержку TCP в NFS в одном из дополнений к версии 3. С поддержкой TCP повысились практическая осуществимость использования NFS в глобальных сетях.

NFSv4 выпущена в декабре 2000 года под влиянием AFS и CIFS, в неё включены улучшения производительности и безопасности. Версия 4 стала первой версией, разработанной совместно с Internet Engineering Task Force (IETF). NFS версии v4.1 была одобрена IESG в январе 2010 года (новая спецификация, объёмом 612 страниц, стала известна как самый длинный документ, одобренный IETF). Важным нововведением версии 4.1 является спецификация pNFS - Parallel NFS, механизма параллельного доступа NFS-клиента к данным множества распределенных NFS-серверов. Наличие такого механизма в стандарте сетевой файловой системы поможет строить распределённые облачные хранилища и информационные системы.

Цели разработки

Изначальными требованиями при разработке NFS были:

  • потенциальная поддержка различных операционных систем (не только UNIX), чтобы серверы и клиенты NFS возможно было бы реализовать в разных операционных системах;
  • протокол не должен зависеть от каких-либо определённых аппаратных средств;
  • должны быть реализованы простые механизмы восстановления в случае отказов сервера или клиента;
  • приложения должны иметь прозрачный доступ к удаленным файлам без использования специальных путевых имен или библиотек и без перекомпиляции;
  • для UNIX-клиентов должна поддерживаться семантика UNIX;
  • производительность NFS должна быть сравнима с производительностью локальных дисков;
  • реализация не должна быть зависимой от транспортных средств.

Принцип работы NFS

NFS строится по крайней мере из двух основных частей: сервера и одного или большего количества клиентов. Клиент обращается к данным, находящимся на сервере, в режиме удалённого доступа. Для того, чтобы это нормально функционировало, нужно настроить и запустить несколько процессов. Реализация NFS состоит из нескольких компонентов. Некоторые из них локализованы либо на сервере, либо на клиенте, а некоторые используются и на обеих сторонах соединения. Некоторые компоненты не требуются для обеспечения основных функциональных возможностей, но составляют часть расширенного интерфейса NFS.

Протокол NFS определяет набор запросов (операций), которые могут быть направлены клиентом к серверу, а также набор аргументов и возвращаемые значения для каждого из этих запросов. Версия 1 этого протокола существовала только в недрах Sun Microsystems и никогда не была выпущена. Все реализации NFS (в том числе NFSv3) поддерживают версию 2 NFS (NFSv2), которая впервые была выпущена в 1985 году в SunOS 2.0. Версия 3 протокола была опубликована в 1993 году и реализована некоторыми фирмами-поставщиками.

Протокол удаленного вызова процедур (RPC) определяет формат всех взаимодействий между клиентом и сервером. Каждый запрос NFS посылается как пакет RPC. На сервере работают следующие даемоны :

  • rpc.nfsd - Основной даемон сервера NFS - nfsd (в новых версиях иногда называется nfsd4). Этот демон обслуживает запросы клиентов NFS. Параметр RPCNFSDCOUNT в файле /etc/default/nfs-kernel-server в Debian и NFSDCOUNT в файле /etc/sysconfig/nfs в RedHat определяет число запускаемых демонов (по-умолчанию - 8). (RPC программа 100003)
  • rpc.mountd - Даемон монтирования NFS mountd обрабатывает запросы клиентов на монтирование каталогов. Демон mountd работает на серверах NFS. (RPC программа 100005)
  • rpc.statd - Даемон наблюдения за сетевым состоянием (он же Network Status Monitor, он же NSM). Он позволяет корректно отменять блокировку после сбоя/перезагрузки. Для уведомления о сбое использует программу /usr/sbin/sm-notify. Демон statd работает как на серверах, так и на клиентах. Ранее данный сервер был необходим для работы rpc.lockd, но за блокировки сейчас отвечает ядро. (RPC программа 100021 и 100024 - в новых версиях)
  • rpc.lockd - Даемон блокировки lockd (он же NFS lock manager (NLM)) обрабатывает запросы на блокировку файлов. Демон блокировки работает как на серверах, так и на клиентах. Клиенты запрашивают блокировку файлов, а серверы ее разрешают. (устарел и в новых дистрибутивах не используется как демон. Его функции в современных дистрибутивах (с ядром старше 2.2.18) выполняются ядра (lockd). (RPC программа 100024)
  • rpc.idmapd - Даемон idmapd для NFSv4 на сервере преобразует локальные uid/gid пользователей в формат вида имя@домен, а сервис на клиенте преобразует имена пользователей/групп вида имя@домен в локальные идентификаторы пользователя и группы (согласно конфигурационному файлу /etc/idmapd.conf).

Клиент может запустить также даемон, называемый nfsiod. nfsiod обслуживает запросы, поступающие от сервера от сервера NFS. Он необязателен, увеличивает производительность, однако для нормальной и правильной работы не требуется. В NFSv4 при использовании Kerberos дополнительно запускаются демоны:

  • rpc.gssd - Даемон NFSv4 обеспечивает методы аутентификации через GSS-API (Kerberos-аутентификация). Работает на клиенте и сервере.
  • rpc.svcgssd - Даемон сервера NFSv4, который обеспечивает проверку подлинности клиента на стороне сервера.

Даемоны старых версий (NFS v.3 и ниже):

  • nfslogd - даемон журналов NFS фиксирует активность для экспортированных файловых систем, работает на серверах NFS
  • rpc.rquotad - сервер удаленных квот предоставляет информацию о квотах пользователей в удаленных файловых системах, может работать как на серверах, так и на клиентах.

Кроме указанных выше пакетов, для корректной работы NFSv2 и v3 требуется дополнительный пакет portmap (в более новых дистрибутивах заменен на переименован в rpcbind). Sun RPC - это сервер, который преобразует номера программ RPC (Remote Procedure Call) в номера портов TCP/UDP.

portmap оперирует несколькими сущностями:

  • RPC-вызовами или запросами
  • TCP/UDP портами, версией протокола (tcp или udp)
  • номерами программ и версиями программ

Даемон portmap запускается скриптом /etc/init.d/portmap до старта NFS-сервисов.

Работа сервера RPC (Remote Procedure Call) заключается в обработке RPC-вызовов (т.н. RPC-процедур) от локальных и удаленных процессов. Используя RPC-вызовы, сервисы регистрируют или удаляют себя в/из преобразователя портов (portmap, portmapper, он же, в новых версиях, rpcbind), а клиенты с помощью RPC-вызовов направляя запросы к portmapper получают необходимую информацию.

Работу RPC-сервера можно представить следующими шагами:

  1. Преобразователь портов должен стартовать первым, обычно при загрузке системы. При этом создается конечная точка TCP и осуществляется открытие TCP порта 111. Также создается конечная точка UDP, которая находится в ожидании, когда на UDP порт 111 прибудет UDP датаграмма.
  2. При старте программа, работающая через сервер RPC создает конечную точку TCP и конечную точку UDP для каждой поддерживаемой версии программы. (Сервер RPC может поддерживать несколько версий. Клиент указывает требуемую версию при посылке RPC-вызова.) Динамически назначаемый номер порта закрепляется за каждой версией сервиса. Сервер регистрирует каждую программу, версию, протокол и номер порта, осуществляя соответствующий RPC-вызов.
  3. Когда программе клиента RPC необходимо получить необходимую информацию, она вызывает вызов процедуру преобразователя портов, чтобы получить динамически назначаемый номер порта для заданной программы, версии и протокола.
  4. В ответ на этот запрос север возвращает номер порта.
  5. Клиент отправляет сообщение RPC-запрос на номер порта, полученный в пункте 4. Если используется UDP, клиент просто посылает UDP датаграмму, содержащую сообщение RPC-вызова, на номер UDP порта, на котором работает запрошенный сервис. В ответ сервис отправляет UDP датаграмму, содержащую сообщение RPC отклика. Если используется TCP, клиент осуществляет активное открытие на номер TCP порта требуемого сервиса и затем посылает сообщение вызова RPC по установленному соединению. Сервер отвечает сообщением отклика RPC по соединению.

Для получения информации от RPC-сервера используется утилита rpcinfo, она отображает номер зарегистрированной программы, версию, протокол, порт и название. С помощью rpcinfo также можно удалить регистрацию программы или получить информацию об отдельном сервисе RPC. При указании параметров -p host программа выводит список всех зарегистрированных RPC программ на хосте host. Без указания хоста программа выведет сервисы на localhost.

NFS сервер (точнее даемон rpc.nfsd) получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS работает с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.

Описание процесса обращения к файлу, расположенному на сервере NFS:

  • Клиенту (пользовательскому процессу) безразлично, получает ли он доступ к локальному файлу или к NFS файлу. Ядро занимается взаимодействием с железом через модули ядра или встроенные системные вызовы.
  • Модуль ядра kernel/fs/nfs/nfs.ko, который выполняет функции NFS клиента отправляет RPC запросы NFS серверу через модуль TCP/IP. NFS обычно использует UDP, однако более новые реализации могут использовать TCP.
  • NFS сервер получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS может работать с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.
  • Когда NFS сервер получает запрос от клиента, он передаётся локальной подпрограмме доступа к файлу, которая обеспечивает доступ к локальному диску на сервере.
  • Результат обращения диску возвращается клиенту.

Настройка сервера NFS

Настройка сервера в целом заключается в задании локальных каталогов, разрешенных для монтирования удаленными системами в файле /etc/exports. Это действие называется экспорт иерархии каталогов. Основными источниками информации об экспортированных каталогах служат следующие файлы:

Структура папки Root

  1. /etc/exports - основной конфигурационный файл, хранящий в себе конфигурацию экспортированных каталогов. Используется при запуске NFS и утилитой exportfs.
  2. /var/lib/nfs/xtab - содержит список каталогов, монтированных удаленными клиентами. Используется демоном rpc.mountd, когда клиент пытается смонтировать иерархию (создается запись о монтировании).
  3. /var/lib/nfs/etab - список каталогов, которые могут быть смонтированы удаленными системами с указанием всех параметров экспортированных каталогов.
  4. /var/lib/nfs/rmtab - список каталогов, которые не разэкспортированы в данный момент.
  5. /proc/fs/nfsd - специальная файловая система (ядро 2.6) для управления NFS сервером.
  6. /proc/net/rpc - содержит "сырую" (raw) статистику, которую можно получить с помощью nfsstat, а также различные кеши.
  7. /var/run/portmap_mapping - информация о зарегистрированных в RPC сервисах.

В файле exports используются следующие общие опции:

  • auth_nlm (no_auth_nlm) или secure_locks (insecure_locks) - указывает, что сервер должен требовать аутентификацию запросов на блокировку (с помощью протокола NFS Lock Manager (диспетчер блокировок NFS)).
  • nohide (hide) - если сервер экспортирует две иерархии каталогов, при этом одна вложенна (примонтированна) в другую. Клиенту необходимо явно смонтировать вторую (дочернюю) иерархию, иначе точка монтирования дочерней иерархии будет выглядеть как пустой каталог. Опция nohide приводит к появлению второй иерархии каталогов без явного монтирования.
  • ro - Разрешает только запросы на чтение.
  • rw - Разрешает запросы на запись.
  • secure (insecure) - требует, чтобы запросы NFS поступали с защищенных портов (< 1024), чтобы программа без прав root не могла монтировать иерархию каталогов.
  • subtree_check (no_subtree_check) - Если экспортируется подкаталог фаловой системы, но не вся файловая система, сервер проверяет, находится ли запрошенный файл в экспортированном подкаталоге. Отключение проверки уменьшает безопасность, но увеличивает скорость передачи данных.
  • sync (async) - указывает, что сервер должен отвечать на запросы только после записи на диск изменений, выполненных этими запросами. Опция async указывает серверу не ждать записи информации на диск, что повышает производительность, но понижает надежность, т.к. в случае обрыва соединения или отказа оборудования возможна потеря информации.
  • wdelay (no_wdelay) - указывает серверу задерживать выполнение запросов на запись, если ожидается последующий запрос на запись, записывая данные более большими блоками. Это повышает производительность при отправке больших очередей команд на запись. no_wdelay указывает не откладывать выполнение команды на запись, что может быть полезно, если сервер получает большое количество команд не связанных друг с другом.

Управление сервером NFS

Управление сервером NFS осуществляется с помощью следующих утилит:

  • nfsstat
  • showmsecure (insecure)ount
  • exportfs

Утилита nfsstat позволяет посмотреть статистику RPC и NFS серверов.

showmount

Утилита showmount запрашивает демон rpc.mountd на удалённом хосте о смонтированных файловых системах. По умолчанию выдаётся отсортированный список клиентов. Команды:

  • --all - выдаётся список клиентов и точек монтирования с указанием куда клиент примонтировал каталог. Эта информация может быть не надежной.
  • --directories - выдаётся список точек монтирования.
  • --exports - выдаётся список экспортируемых файловых систем с точки зрения nfsd.

При запуске showmount без аргументов, на консоль будет выведена информация о системах, которым разрешено монтировать локальные каталоги.

exportfs

Данная команда синхронизирует экспортированные каталоги, заданные в файле /etc/exports, с файлом /var/lib/nfs/xtab и удаляет из xtab несуществующие. exportfs выполняется при запуске демона nfsd с аргументом -r. Утилита exportfs в режиме ядра 2.6 общается с демоном rpc.mountd через файлы каталога /var/lib/nfs/ и не общается с ядром напрямую. Без параметров выдаёт список текущих экспортируемых файловых систем. Параметры exportfs:

  1. [клиент:имя-каталога] - добавить или удалить указанную файловую систему для указанного клиента)
  2. -v - выводить больше информации
  3. -r - переэкспортировать все каталоги (синхронизировать /etc/exports и /var/lib/nfs/xtab)
  4. -u - удалить из списка экспортируемых
  5. -a - добавить или удалить все файловые системы
  6. -o - опции через запятую (аналогичен опциям применяемым в /etc/exports; т.о. можно изменять опции уже смонтированных файловых систем)
  7. -i - не использовать /etc/exports при добавлении, только параметры текущей командной строки
  8. -f - сбросить список экспортируемых систем в ядре 2.6.

Монтирование файловой системы Network Files System командой mount

Пример команды mount для монтирования файловой системы NFS в Debian:

FILES ~ # mount -t nfs archiv:/archiv-small /archivs/archiv-small FILES ~ # mount -t nfs -o ro archiv:/archiv-big /archivs/archiv-big FILES ~ # mount ....... archiv:/archiv-small on /archivs/archiv-small type nfs (rw,addr=10.0.0.6) archiv:/archiv-big on /archivs/archiv-big type nfs (ro,addr=10.0.0.6)

Первая команда монтирует экспортированный каталог /archiv-small на сервере archiv в локальную точку монтирования /archivs/archiv-small с опциями по умолчанию (то есть для чтения и записи). Вторая команда монтирует экспортированный каталог /archiv-big на сервере archiv в локальный каталог /archivs/archiv-big с опцией только для чтения (ro). Команда mount без параметров наглядно отображает нам результат монтирования. Кроме опции только чтения (ro), возможно задать другие основные опции при монтировании NFS :

  • nosuid - Данная опция запрещает исполнять setuid программы из смонтированного каталога.
  • nodev (no device - не устройство) - Данная опция запрещает использовать в качестве устройств символьные и блочные специальные файлы.
  • lock (nolock) - Разрешает блокировку NFS (по умолчанию). nolock отключает блокировку NFS (не запускает демон lockd) и удобна при работе со старыми серверами, не поддерживающими блокировку NFS.
  • mounthost=имя - Имя хоста, на котором запущен демон монтирования NFS - mountd.
  • mountport=n - Порт, используемый демоном mountd.
  • port=n - порт, используемый для подключения к NFS серверу (по умолчанию 2049, если демон rpc.nfsd не зарегистрирован на RPC-сервере). Если n=0 (по умолчанию), то NFS посылает запрос к portmap на сервере, чтобы определить порт.
  • rsize=n (read block size - размер блока чтения) - Количество байтов, читаемых за один раз с NFS-сервера. Стандартно - 4096.
  • wsize=n (write block size - размер блока записи) - Количество байтов, записываемых за один раз на NFS-сервер. Стандартно - 4096.
  • tcp или udp - Для монтирования NFS использовать протокол TCP или UDP соответственно.
  • bg - При потери доступа к серверу, повторять попытки в фоновом режиме, чтобы не блокировать процесс загрузки системы.
  • fg - При потери доступа к серверу, повторять попытки в приоритетном режиме. Данный параметр может заблокировать процесс загрузки системы повторениями попыток монтирования. По этой причине параметр fg используется преимущественно при отладке.
  • Опции, влияющие на кэширование атрибутов при монтировании NFS
  • Атрибуты файлов, хранящиеся в inod (индексных дескрипторах), такие как время модификации, размер, жесткие ссылки, владелец, обычно изменяются не часто для обычных файлов и еще реже - для каталогов. Ядро использует время модификации файла, чтобы определить устарел ли кэш, сравнивая время модификации в кэше и время модификации самого файла.

Кэш атрибутов периодически обновляется в соответствии с заданными параметрами:

  1. ac (noac) (attrebute cache - кэширование атрибутов) - Разрешает кэширование атрибутов (по-умолчанию). Хотя опция noac замедляет работу сервера, она позволяет избежать устаревания атрибутов, когда несколько клиентов активно записывают информацию в общию иерархию.
  2. acdirmax=n (attribute cache directory file maximum - кэширование атрибута максимум для файла каталога) - Максимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 60 сек.)
  3. acdirmin=n (attribute cache directory file minimum - кэширование атрибута минимум для файла каталога) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 30 сек.)
  4. acregmax=n (attribute cache regular file maximum - кэширование атрибута максимум для обычного файла) - Максимаьное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 60 сек.)
  5. acregmin=n (attribute cache regular file minimum- кэширование атрибута минимум для обычного файла) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 3 сек.)
  6. actimeo=n (attribute cache timeout - таймаут кэширования атрибутов) - Заменяет значения для всех вышуказаных опций. Если actimeo не задан, то вышеуказанные значения принимают значения по умолчанию.

Опции обработки ошибок NFS

Следующие опции управляют действиями NFS при отсутствии ответа от сервера или в случае возникновения ошибок ввода/вывода:

  • fg (bg) (foreground - передний план, background - задний план) - Производить попытки монтирования отказавшей NFS на переднем плане/в фоне.
  • hard (soft) - выводит на консоль сообщение "server not responding" при достижении таймаута и продолжает попытки монтирования. При заданной опции soft - при таймауте сообщает вызвавшей операцию программе об ошибке ввода/вывода.
  • nointr (intr) (no interrupt - не прерывать) - Не разрешает сигналам прерывать файловые операции в жестко смонтированной иерархии каталогов при достижении большого таймаута. intr - разрешает прерывание.
  • retrans=n (retransmission value - значение повторной передачи) - После n малых таймаутов NFS генерирует большой таймаут (по-умолчанию 3). Большой таймаут прекращает выполнение операций или выводит на консоль сообщение "server not responding", в зависимости от указания опции hard/soft.
  • retry=n (retry value - значение повторно попытки) - Количество минут повторений службы NFS операций монтирования, прежде чем сдаться (по-умолчанию 10000).
  • timeo=n (timeout value - значение таймаута) - Количество десятых долей секунды ожидания службой NFS до повторной передачи в случае RPC или малого таймаута (по-умолчанию 7). Это значение увеличивается при каждом таймауте до максимального значения 60 секунд или до наступления большого таймаута. В случае занятой сети, медленного сервера или при прохождении запроса через несколько маршрутизаторов или шлюзов увеличение этого значения может повысить производительность.

Повышение производительности NFS

На производительность NFS могут влиять несколько параметров, особенно при работе через медленные соединения. При работе с медленными и высоконагруженными соединениями, желательно использовать параметр hard, чтобы таймауты не привели к прекращению работы программ. Но необходимо осознавать, что если смонтировать файловую систему через NFS с параметром hard через fstab, а удаленный хост окажется недоступен, то при загрузке системы произойдет зависание.

Одним из способов повышения производительности NFS - увеличение количества байтов, передаваемых за один раз. Размер в 4096 байт слишком мал для современных быстрых соединений, увеличивая это значение до 8192 и более можно экспериментальным путем найти оптимальную скорость.

Так же, не стоит упускать из внимания и настройки тайм-аутов. NFS ожидает ответа на пересылку данных в течении промежутка времени, указанного в опции timeo, если ответ за это время не получен, то выполняется повторная пересылка. На загруженных и медленных соединениях это время может быть меньше времени реакции сервера и способности каналов связи, в результате чего могут быть излишние повторные пересылки, замедляющие работу.По умолчанию, timeo равно 0,7 сек (700 миллисекунд). после обнаружения факта обрыва связи в течении 700 мс сервер совершит повторную пересылку и удвоит время ожидания до 1,4 сек., увеличение timeo будет продолжаться до максимального значения в 60 сек.

N FS (Network File System ) в основном разработана для совместного использования файлов и папок между /Unix систем от компании Sun Microsystems в 1980 году . Она позволяет монтировать локальные файловые системы по сети и удаленных хостов, для взаимодействия с ними так, как будто они установлены локально на той же системе. С помощью NFS , мы можем настроить общий доступ к файлам между Unix в Linux системе и Linux для системы Unix .

Преимущества NFS

  1. NFS создает локальный доступ к удаленным файлам.
  2. Он использует стандартную архитектуру клиент /сервер для обмена файлами между всеми машинами на базе * NIX .
  3. С помощью NFS не нужно, чтобы обе машины работали на той же ОС .
  4. С помощью NFS мы можем настроить решение централизованного хранения .
  5. Пользователи получают свои данные независимо от их физического расположения.
  6. Автоматическое обновление для новых файлов.
  7. Более новая версия NFS поддерживает монтирование acl , pseudo под root.
  8. Может быть защищен брандмауэрами и Kerberos .

Услуги NFS

Cервис System V-launched . Серверный пакет NFS включает в себя три средства, входящие в состав пакетов portmap и nfs-Utils .

  1. portmap : отображает вызовы, сделанные из других машин к правильной службе RPC (не требуется с NFSv4 ).
  2. nfs : преобразует удаленные запросы общего доступа к файлам в запросы на локальной файловой системе.
  3. rpc.mountd : эта служба отвечает за монтирование и размонтирования файловых систем.

Важные файлы конфигурации для NFS

  1. /etc/exports : его основной конфигурационный файл NFS , все экспортируемые файлы и каталоги , которые определены в этом файле и на конечном сервере NFS .
  2. /etc/fstab : Для того, чтобы смонтировать каталог NFS на вашей системе без перезагрузок , нам нужно сделать запись в /etc/fstab .
  3. /etc/sysconfig/nfs : Конфигурационный файл NFS для управления, на котором порт RPC и другие услуги прослушивания .

Настройка и монтирование NFS на сервере Linux

Для настройки монтирования NFS , мы будем нуждаться по крайней мере, в двух машинах Linux /Unix . Вот в этом учебнике, мы будем использовать два сервера.

  1. Сервер NFS : nfsserver.example.ru с IP – 192.168.0.55
  2. Клиент NFS : nfsclient.example.ru с IP – 192.168.0.60

Установка сервера NFS и клиента NFS

Нам нужно установить пакеты NFS на нашем сервере NFS , а также на машине клиента NFS . Мы можем установить его с помощью “ ” (Red Hat Linux) и установочный пакет “apt-get ” (Debian и Ubuntu ).

# yum install nfs-utils nfs-utils-lib # yum install portmap (not required with NFSv4) # apt-get install nfs-utils nfs-utils-lib

Теперь запустите службы на обеих машинах.

# /etc/init.d/portmap start # /etc/init.d/nfs start # chkconfig --level 35 portmap on # chkconfig --level 35 nfs on

После установки пакетов и запуск сервисов на обеих машинах, нам нужно настроить обе машины для совместного использования файлов.

Настройка сервера NFS

Сначала настроим сервер NFS .

Настройка каталога экспорта

# mkdir /nfsshare

Теперь нам нужно сделать запись в “/etc/exports ” и перезапустить службы, чтобы сделать наш каталог разделяемыми в сети.

# vi /etc/exports /nfsshare 192.168.0.60(rw,sync,no_root_squash)

В приведенном выше примере, есть каталог, в разделе / под названием “nfsshare “, в настоящее время совместно с клиентом IP “192.168.0.60 ” с привилегиями чтения и записи (RW ), вы можете также использовать имя хоста клиента вместо IP в приведенном выше примере.

Параметры NFS

Некоторые другие варианты мы можем использовать в файлы “/etc/exports ” для совместного использования файлов выглядит следующим образом.

  1. ro : С помощью этой опции мы можем предоставить доступ только для чтения к общим файлам, то есть клиент будет только в состоянии прочитать .
  2. rw : Эта опция позволяет клиент – серверу доступ для обоих для чтения и записи в пределах общего каталога.
  3. sync : Синхронизация подтверждает запросы к общему каталогу только после того, как изменения были совершены.
  4. no_subtree_check : Эта опция предотвращает проверку поддерева . Когда общий каталог является подкаталогом большей файловой системы, NFS выполняет сканирование каждой директории над ним, чтобы проверить свои разрешения и детали. Отключение проверки поддерева может повысить надежность NFS , но снижают безопасность .
  5. no_root_squash : Эта фраза позволяет root , подключиться к определенной папке.

Для большего количества вариантов с “/etc/exports “, рекомендуется прочитать страницы руководства для экспорта .

Настройка клиента NFS

После настройки NFS -сервера, нам необходимо смонтировать этот общий каталог или раздел на клиентском сервере.

Монтирование общих каталогов на клиенте NFS

Теперь на клиенте NFS , нам нужно смонтировать этот каталог для доступа к нему на местном уровне. Для этого, во-первых, мы должны выяснить, какие ресурсы доступны на удаленном сервере или сервере NFS.

# showmount -e 192.168.0.55 Export list for 192.168.0.55: /nfsshare 192.168.0.60

Монтирование доступного каталога в NFS

Для того, чтобы смонтировать общий NFS каталог, мы можем использовать следующую команду монтирования.

# mount -t nfs 192.168.0.55:/nfsshare /mnt/nfsshare

Приведенная выше команда установит общий каталог в “/mnt/nfsshare ” на сервере клиента. Вы можете проверить его следующей командой.

# mount | grep nfs sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw) nfsd on /proc/fs/nfsd type nfsd (rw) 192.168.0.55:/nfsshare on /mnt type nfs (rw,addr=192.168.0.55)

Выше команда mount монтирует на NFS совместно используемый каталог на NFS клиента временно, чтобы смонтировать каталог NFS постоянно на вашей системе вне зависимости от перезагрузок, нам нужно сделать запись в “/etc/fstab “.

# vi /etc/fstab

Добавьте следующую новую строку, как показано ниже.

192.168.0.55:/nfsshare /mnt nfs defauls 0 0

Тестирование режима работы установки NFS

Мы можем протестировать нашу установку сервера NFS путем создания тестового файла на стороне сервера и проверить его наличие на NFS клиента стороне или наоборот.

На стороне сервера nfsserver

Мы создали новый текстовый файл с именем “nfstest.txt ” в этом общем каталоге.

# cat > /nfsshare/nfstest.txt This is a test file to test the working of NFS server setup.

На стороне клиента nfsclient

Перейдите в общий каталог на сервере клиента и вы обнаружите общий файл без какого-либо ручного обновления или службы перезагрузки.

# ll /mnt/nfsshare total 4 -rw-r--r-- 1 root root 61 Sep 21 21:44 nfstest.txt root@nfsclient ~]# cat /mnt/nfsshare/nfstest.txt This is a test file to test the working of NFS server setup.

Удаление монтирования NFS

Если вы хотите размонтировать этот общий каталог с сервера после того, как вы закончите с обменом файлами, вы можете просто размонтировать этот конкретный каталог с помощью команды “umount “. Смотрите этот пример ниже.

Root@nfsclient ~]# umount /mnt/nfsshare

Вы можете видеть, что монтирование было удалено в файловой системе.

# df -h -F nfs

Вы увидите, что эти общие каталоги не доступны больше.

Важные команды для NFS

Некоторые более важные команды для NFS .

  1. showmount -e : Показывает доступные расшаренные объекты на локальном компьютере
  2. showmount -e : Список доступных расшаренных объектов на удаленном сервере
  3. showmount -d : Список всех поддиректорий
  4. exportfs -v : Отображает список расшаренных файлов и опций на сервере
  5. exportfs -a : Экспорт всех доступных объектов, перечисленных в /etc/exports , или имя
  6. exportfs -u : Реэкспорт всех доступных объектов, перечисленные в /etc/exports , или имя
  7. exportfs -r : Обновить список сервера после изменения /etc/exports

Это все про монтирование NFS на данный момент, если интересно, можете прочитать гид о том . Оставляйте свои

Навожу инструкцию по установке и настройке NFS (Network File System). NFS – это сетевая файловая система, с помощью которой можно обращаться к файлам и каталогам удалённого компьютера (сервера), как будто эти файлы и каталоги были локальными. Главным преимуществом такой системы является то, что отдельно взятые рабочие станции могут использовать меньше собственного дискового пространства, так как совместно используемые данные хранятся на отдельной машине (хранилище данных) и доступны для других машин в сети. NFS – это клиент-серверное приложение, где роль хранилища возлагается на сервер. Каждый участник сети – это NFS-клиент, который монтирует сетевой диск сервера у себя в файловой системе.

В роли сервера возьмем Ubuntu 12.04.
В качестве клиентов будем использовать и тестировать Centos и Winows 7.

Master server: 192.168.2.213 (Ubuntu)

Clients: 192.168.2.72 (Centos), 192.168.2.180 (Windows)

Настройка сервера

Для начала нужно настроить сервер. Так как мы будем использовать Ubuntu в роли сервера, нужно установить соответствующий пакет

Root@ubuntu:~# apt-get install nfs-kernel-server

После установки нужного пакеты у нас создались два файла конфигураций. Из лога установки:

… Creating config file /etc/idmapd.conf with new version Creating config file /etc/default/nfs-common with new version …

В первом файле описан user (созданный при установке пакета) и group , для участия в mapping-e (идентификации пользователей).

Root@ubuntu:~# cat /etc/idmapd.conf Verbosity = 0 Pipefs-Directory = /run/rpc_pipefs # set your own domain here, if id differs from FQDN minus hostname # Domain = localdomain Nobody-User = nobody Nobody-Group = nogroup

Как мы знаем, в Linux каждый файл принадлежит конкретному пользователю, у которого есть свой (UID,GID), но у Windows системах схема немного другая. И в связи с этим был придуман механизм mapping, который делает трансляцию разных пользователей с различных ОС в понятный для файловой системы Linux вид.
Второй файл нужен для настройки идентификации Kerberos и настройке нестандартного порта, на котором будет слушаться демон. Он пока нам не нужен. Об настройке Kerberos речь пойдет в следующей статье.

Root@ubuntu:~# cat /etc/default/nfs-common # If you do not set values for the NEED_ options, they will be attempted # autodetected; this should be sufficient for most people. Valid alternatives # for the NEED_ options are "yes" and "no". # Do you want to start the statd daemon? It is not needed for NFSv4. NEED_STATD= # Options for rpc.statd. # Should rpc.statd listen on a specific port? This is especially useful # when you have a port-based firewall. To use a fixed port, set this # this variable to a statd argument like: "--port 4000 --outgoing-port 4001". # For more information, see rpc.statd(8) or http://wiki.debian.org/SecuringNFS STATDOPTS= # Do you want to start the gssd daemon? It is required for Kerberos mounts. NEED_GSSD=

Теперь продолжим настройку.
Все директории для шаринга нужно прописывать в файле /etc/exports. Для начала создадим 2 папки в домашней директории и закинем в них файлы. Дерево каталогов и файлов для экспорта:

Root@ubuntu:~# tree /home/alex/ /home/alex/ ├── nfs_dir1 │ ├── file1_dir1 │ ├── file2_dir1 │ └── file3_dir1 ├── nfs_dir2 ├── file1_dir2 ├── file2_dir2 └── file3_dir2

Теперь нужно присвоит юзера и группу для этих каталогов (берем с файла /etc/idmapd.conf).

Root@ubuntu:~# chown –R nobody:nogroup nfs_dir1/ root@ubuntu:~# chown –R nobody:nogroup nfs_dir2/

Для начала сделаем экспорт директории nfs_dir1 для конкретного IP. Редактируем файл /etc/exprots.

Root@ubuntu:~# vim /etc/exports # Для конкретного хоста (Windows) /home/alex/nfs_dir1 192.168.2.180(rw,sync,all_squash,no_subtree_check,insecure) # Для любого хоста подсети /home/alex/nfs_dir2 192.168.2.0/24(rw,no_root_squash,sync,no_subtree_check)

Здесь наведен минимальный набор опций для корректной работы хранилища с ОС Windows.

  • /home/alex/nfs_dir1 – путь к папке, для которой раздается доступ;
  • 192.168.2.180 – IP-адрес, которому раздается доступ к папке(можно указать всю сеть, тогда запись примет вид 192.168.2.0/24)
  • (rw,sync,all_squash,no_subtree_check) – набор опций.

Популярные опции:

  • rw –чтение/запись(может принимать значение ro-только чтение);
  • no_root_squash – по умолчанию пользователь root на клиентской машине не будет иметь доступа к разделяемой директории сервера. Этой опцией мы снимаем это ограничение. В целях безопасности этого лучше не делать;
  • sync – синхронный режим доступа(может принимать обратное значение — async );
  • noaccess – запрещает доступ к указанной директории. Может быть полезной, если перед этим вы задали доступ всем пользователям сети к определенной директории, и теперь хотите ограничить доступ в поддиректории лишь некоторым пользователям.
  • all_squash – подразумевает, что все подключения будут выполнятся от анонимного пользователя (нужно для Windows клиента)
  • anonuid= 1000 – привязывает анонимного пользователя к «местному» пользователю;
  • anongid= 1000 – привязывает анонимного пользователя к группе «местного» пользователя.
  • no_subtree_check(subtree_check) –если экспортируется подкаталог файловой системы, но не вся файловая система, сервер проверяет, находится ли запрошенный файл в экспортированном подкаталоге. Отключение проверки уменьшает безопасность, но увеличивает скорость передачи данных.
  • Обычно, Linux (и другие Unix-подобные операционные системы) резервируют TCP и UDP порты от 1-1023 (так называемые безопасные порты) для использования процессами пользователя root. Чтобы удостовериться, что именно root инициировал удаленное подключение NFS, сервер NFS обычно требует, чтобы удаленные клиенты использовали безопасные порты. Это соглашение, однако, не соблюдается некоторыми операционными системами (например Windows). В таких случаях опция insecure позволяет клиенту NFS использовать любой порт TCP/UDP. Обычно она требуется при обслуживании клиентов Windows.

Все доступные опции и синтаксис записи хостов, групп хостов и т.п. можно почитать в мануале

Root@ubuntu:~# exportfs –a

Теперь проверяем что у нас экспортировалось.

Root@ubuntu:~# exportfs -v /home/alex/nfs_dir1 192.168.2.180(rw,wdelay,all_squash,no_subtree_check,insecure) /home/alex/nfs_dir2 192.168.2.0/24(rw,wdelay,no_root_squash,no_subtree_check)

Сервер настроен.

Настройка клиентов

Настройка Windows клиента

Если не было сообщений об ошибке. Можно приступить к монтирование на клиентской стороне.
Для начала, нужно добавить сервис (службу-клиента) NFS. Для этого переходив в Пуск —> Панель управления —> Программы и компоненты и нажимаем на пункт меню слева Включение или отключение компонентов Windows . В появившимся окне выбираем Клиент для NFS и жмем ОК (рис. 1).


Рисунок 1

Далее нужно смонтировать диск. Для этого можно использовать командную строку или же просто щелкнуть правой кнопкой мыши на Мой компьютер и выбрать Подключение сетевого диска . И ввести строку \\192.168.2.213\home\alex\nfs_dir1 . Это IP сервера и путь к папке (рис. 2).


Рисунок 2

Если все ок, мы увидим диск (рис. 3).


Рисунок 3

То же можно проделать, используя командную строку (рис. 4).


Рисунок 4

Возможные ошибки:

Вы не сможете подключить сетевой NFS диск к Windows OS (рис. 5), если
1. Не установлен клиент NFS
2. Включен (не настроен) фаэрвол
3. Нет сетевого доступа к серверу
4. Неверно введены параметры монтирования
5. Не настроен (не применены настройки) экспорт на сервере.
6. Добавить опцию insecure в настройках экспорта


Рисунок 5 – Ошибка подключения сетевого NFS диска

Вы не сможете добавить файл в смонтированную файловую систему (рис. 6) , если:
1. На сервере не выставлены права на папку (nobody:nogroup)
2. Не выставлена опция all_squash в настройках экспорта
3. Не выставлена опция rw в настройках экспорта


Рисунок 6 – Ошибка при добавлении файла на NFS диска

Настройка Centos клиента

Настройка линукс систем довольно проста и безболезненна. Нужно просто установить нужные пакеты и смонтировать диск. Для Centos нужны следующие пакеты

# yum install nfs-utils nfs-utils-lib

# mkdir -p /mnt/nfs # mount 192.168.2.213:/home/alex/nfs_dir1 /mnt/nfs # mount /dev/mapper/vg_slave-lv_root on / type ext4 (rw) proc on /proc type proc (rw) sysfs on /sys type sysfs (rw) devpts on /dev/pts type devpts (rw,gid=5,mode=620) tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0") /dev/sda1 on /boot type ext4 (rw) none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw) sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw) 192.168.2.213:/home/alex/nfs_dir1 on /mnt/nfs type nfs (rw,vers=4,addr=192.168.2.213,clientaddr=192.168.2.72)

В данном случае мы можем добавлять любой файл и директорию в смонтированную nfs_dir1 папку от имени любого пользователя системы (all_squash ). Но если мы смонтируем вторую папку nfs_dir2, то в нее может записывать ТОЛЬКО root, так как там стоит опция no_root_squash . Проверяем.

# mkdir /mnt/dir1 # mkdir /mnt/dir2 # mount 192.168.2.213:/home/alex/nfs_dir1 /mnt/dir1 # mount 192.168.2.213:/home/alex/nfs_dir2 /mnt/dir2 или # mount -t nfs4 -o rw,hard,intr,bg 192.168.2.213:/home/alex/nfs_dir2 /mnt/dir2 # echo "Hello" > /mnt/dir1/file1 # echo "Hello" > /mnt/dir2/file1 # su alex $ echo "Hello" > /mnt/dir1/file1 $ echo "Hello" > /mnt/dir2/file1 bash: /mnt/dir2/file1: Permission denied

Возможные флаги монтирования.

Флаг Описание
rw Монтирование файловой системы для чтения/записи (она должна экспортировать­ся сервером в режиме чтения/записи)
го Монтирование файловой системы только для чтения
bg Если смонтировать файловую систему не удается (сервер не отвечает), следует перевести операцию в фоновый режим и продолжить обработку других запросов на монтирование
hard Если сервер отключился, операции, которые пытаются получить к нему доступ, блокируются до тех пор, пока сервер не включится вновь
soft Если сервер отключился, операции, которые пытаются получить к нему доступ, завершаются выдачей сообщения об ошибке. Этот флаг полезно устанавливать для того, чтобы предотвратить зависание процессов в случае неудачного монтирова­ния не очень важных файловых систем
intr Позволяет прерывать с клавиатуры заблокированные операции (будут выдаваться сообщения об ошибке)
nointr Не позволяет прерывать с клавиатуры заблокированные операции
retrans=n Указывает, сколько раз нужно повторить запрос, прежде чем будет выдано со­общение об ошибке (для файловых систем, смонтированных с флагом soft)
timeo=n Задает интервал тайм-аута для запросов (в десятых долях секунды)
rsize=n Задает размер буфера чтения равным n байт
wsize=fl Задает размер буфера записи равным n байт
sec=режим Задает режим безопасности
vers=n Задает версию протокола NFS
proto = протокол Выбирает транспортный протокол; им должен быть протокол tcp для версии NVS 4

Так же можно проверить с консоли, правильно ли сервер экспортировал файловую систему.

Root@centos ~# showmount -e 192.168.2.213 Export list for 192.168.2.213: /home/alex/nfs_dir2 192.168.2.0/24 /home/alex/nfs_dir1 192.168.2.180

Добавляем монтирование в автозагрузку

# cat /etc/fstab ... 192.168.2.213:/home/alex/nfs_dir2 /mnt/dir2 nfs4 rw,bg,intr,hard,nodev,nosuid 0 0

Root@centos ~# mount -a -t nfs4

Возможные ошибки.

Root@centos ~# mount -a -t nfs4 mount.nfs4: mount point /mnt/dir2 does not exist root@centos ~# mount -a -t nfs4 mount.nfs4: remote share not in "host:dir" format

В первом случаи нужно создать папку. Во втором — синтаксические ошибки в fstab.
Если возникли ошибки при монтировании NFS разделов – пройдитесь по списку Возможные ошибки из предыдущего раздела.
Для монтирования NFS разделов можно также использовать autofs. О чем пойдет речь в .

#image.jpgНеплохого времени, читатели и гости моего блога. Очень большой перерыв меж постами был, но я снова в бою). В сегодняшней статье рассмотрю работу протокола NFS , а так же настройку сервера NFS и клиента NFS на Linux .

Введение в NFS

NFS (Network File System - сетевая файловая система) по моему мнению - идеальное решение в локальной сети, где нужен быстрый (более быстрый по сравнению с SAMBA и менее ресурсоемкий по сравнению с удаленными файловыми системами с шифрованием - sshfs, SFTP, etc...) обмен данными и во главе угла не стоит безопасность передаваемой инфы. Протокол NFS позволяет монтировать удалённые файловые системы через сеть в локальное дерево каталогов, как если бы это была примонтирована дисковая файловая система.

Тем локальные приложения могут работать с удаленной файловой системой, как с локальной. Но нужно быть осторожным (!) с настройкой NFS , ибо при определенной конфигурации можно подвесить операционную систему клиента в ожидании бесконечного ввода/вывода.

Протокол NFS основан на работе протокола RPC , который пока не поддается моему пониманию)) поэтому материал в статье будет малость расплывчат... Прежде, чем Вы сможете использовать NFS, будь это сервер или клиент, Вы должны удостовериться, что Ваше ядро имеет поддержку файловой системы NFS. Проверить поддерживает ли ядро файловую систему NFS можно, просмотрев наличие соответствующих строк в файле /proc/filesystems:

ARCHIV ~ # grep nfs /proc/filesystems nodev nfs nodev nfs4 nodev nfsd

Если обозначенных строк в файле /proc/filesystems не окажется, то необходимо установить описанные ниже пакеты. Это скорее всего дозволит установить зависимые модули ядра для поддержки подходящих файловых систем.

Если после установки пакетов, поддержка NFS не будет отображена в обозначенном файле, то необходимо будет перекомпилировать ядро, с включением данной функции.

История Network File System

Протокол NFS разработан компанией Sun Microsystems и имеет в своей истории Четыре версии. NFSv1 была разработана в Одна тыща девятьсот восемьдесят девять и являлась экспериментальной, работала на протоколе UDP. Версия Один описана в RFC 1094.

NFSv2 была выпущена в том же Одна тыща девятьсот восемьдесят девять г., описывалась тем же RFC1094 и так же базировалась на протоколе UDP, при всем этом позволяла читать наименее 2Гб из файла. NFSv3 доработана в Одна тыща девятьсот девяносто 5 г. и описана в RFC 1813.

Основными нововведениями третьей версии стало поддержка файлов большого размера, добавлена поддержка протокола TCP и TCP-пакетов большущего размера, что существенно ускорило работоспосбоность технологии. NFSv4 доработана в Две тыщи г. и описана в RFC 3010, в Две тыщи три г. пересмотрена и описана в RFC 3530.

4-ая версия включила в себя улучшение производительности, поддержку различных средств аутентификации (а конкретно, Kerberos и LIPKEY с внедрением протокола RPCSEC GSS) и списков контроля доступа (как POSIX, так и Windows-типов). NFS версии v4.1 была одобрена IESG в Две тыщи 10 г., и получила номер RFC 5661.

Принципным нововведением версии 4.1, является спецификация pNFS - Parallel NFS, механизма параллельного доступа NFS-клиента к данным множества распределенных NFS-серверов. Наличие такого механизма в образце сетевой файловой системы поможет строить распределённые «облачные» («cloud») хранилища и информационные системы.

NFS сервер

Так как у нас NFS - это сетевая файловая система, то необходимо настроить сеть в Linux. (Так же можно почитать статью главные понятия сетей). Далее необходимо установить соответствующий пакет. В Debian это пакет nfs-kernel-server и nfs-common, в RedHat это пакет nfs-utils.

А так же, необходимо разрешить запуск беса на подходящих уровнях выполнения (команда в RedHat - /sbin/chkconfig nfs on, в Debian - /usr/sbin/update-rc.d nfs-kernel-server defaults).

Установленные пакеты в Debian запускается в следующем порядке:

ARCHIV ~ # ls -la /etc/rc2.d/ | grep nfs lrwxrwxrwx Один root root 20 Окт Восемнадцать 15:02 S15nfs-common -> ../init.d/nfs-common lrwxrwxrwx Один root root 20 семь Окт 20 два 01:23 S16nfs-kernel-server -> ../init.d/nfs-kernel-server

Другими словами, сначала запускается nfs-common , позже сам сервер nfs-kernel-server .

В RedHat ситуация схожая, за тем только исключением, что 1-ый скрипт называется nfslock , а сервер называется просто nfs . Про nfs-common нам сайт debian дословно говорит следующее: общие файлы для клиента и сервера NFS, этот пакет нужно устанавливать на машину, которая будет работать в качестве клиента или сервера NFS.

В пакет включены программы: lockd, statd, showmount, nfsstat, gssd и idmapd. Просмотрев содержимое скрипта запуска /etc/init.d/nfs-common можно отследить следующую последовательность работы: скрипт проверяет наличие исполняемого бинарного файла /sbin/rpc.statd, проверяет наличие в файлах /etc/default/nfs-common, /etc/fstab и /etc/exports черт, требующих запуск бесов idmapd и gssd , запускает демона /sbin/rpc.statd , далее перед запуском /usr/sbin/rpc.idmapd и /usr/sbin/rpc.gssd проверяет наличие этих исполняемых бинарных файлов, далее для беса /usr/sbin/rpc.idmapd проверяет наличие модулей ядра sunrpc, nfs и nfsd, а так же поддержку файловой системы rpc_pipefs в ядре (другими словами наличие ее в файле /proc/filesystems), если все удачно, то запускает /usr/sbin/rpc.idmapd . Дополнительно, для беса /usr/sbin/rpc.gssd проверяет модуль ядра rpcsec_gss_krb5 и запускает бес.

Если просмотреть содержимое скрипта запуска NFS-сервера на Debian (/etc/init.d/nfs-kernel-server), то можно проследить следующую последовательность: при старте, скрипт проверяет существование файла /etc/exports, наличие модуля ядра nfsd, наличие поддержки файловой системы NFS в ядре Linux (другими словами в файле /proc/filesystems), если все на месте, то запускается бес /usr/sbin/rpc.nfsd , далее проверяет задан ли параметр NEED_SVCGSSD (задается в файле опций сервера /etc/default/nfs-kernel-server) и, если задан - запускает беса /usr/sbin/rpc.svcgssd , последним запускает беса /usr/sbin/rpc.mountd . Из данного скрипта видно, что работа сервера NFS состоит из бесов rpc.nfsd, rpc.mountd и если употребляется Kerberos-аутентификация, то и бес rcp.svcgssd. В краснойшляпе еще запускается бес rpc.rquotad и nfslogd (В Debian я почему-то не нашел инфы об этом демоне и о причинах его отсутствия, видимо удален...).

Из этого становиться понятно, что сервер Network File System состоит из следующих процессов (читай - бесов) , расположенных в каталогах /sbin и /usr/sbin:

  • rpc.statd - Бес наблюдения за сетевым состоянием (он же Network Status Monitor, он же NSM). Он позволяет корректно отменять блокировку после сбоя/перезагрузки. Для уведомления о нарушении употребляет программу /usr/sbin/sm-notify. Бес statd работает как на серверах, так и на клиентах. Ранее данный сервер был нужен для работы rpc.lockd, но за блокировки сейчас отвечает ядро (прим: если я не ошибаюсь #image.jpg). (RPC программа 100 тыщ 20 один и 100 тыщ 20 четыре - в новых версиях)
  • rpc.lockd - Бес блокировки lockd (он же NFS lock manager (NLM)) обрабатывает запросы на блокировку файлов. Бес блокировки работает как на серверах, так и на клиентах. Клиенты запрашивают блокировку файлов, а серверы ее разрешают. (устарел и в новых дистрибутивах не употребляется как бес. Его функции в современных дистрибутивах (с ядром старше 2.2.18) выполняются ядром, точнее модулем ядра (lockd).) (RPC программа 100024)
  • rpc.nfsd - Основной бес сервера NFS - nfsd (в новых версиях временами называется nfsd4 ). Этот бес обслуживает запросы клиентов NFS. Параметр RPCNFSDCOUNT в файле /etc/default/nfs-kernel-server в Debian и NFSDCOUNT в файле /etc/sysconfig/nfs в RedHat определяет число запускаемых бесов (по-умолчанию - 8).(RPC программа 100003)
  • rpc.mountd - Бес монтирования NFS mountd обрабатывает запросы клиентов на монтирование каталогов. Бес mountd работает на серверах NFS. (RPC программа 100005)
  • rpc.idmapd - Бес idmapd для NFSv4 на сервере преобразует локальные uid/gid юзеров в формат вида имя@домен, а сервис на клиенте преобразует имена юзеров/групп вида имя@домен в локальные идентификаторы пользователя и группы (согласно конфигурационному файлу /etc/idmapd.conf, подробней в man idmapd.conf):.
  • дополнительно, в старых версиях NFS использовались бесы: nfslogd - бес журналов NFS фиксирует активность для экспортированных файловых систем, работает на серверах NFS и rquotad - сервер удаленных квот предоставляет информацию о квотах юзеров в удаленных файловых системах, может работать как на серверах, так и на клиентах.(RPC программа 100011)

В NFSv4 при использовании Kerberos дополнительно запускаются бесы:

  • rpc.gssd - Бес NFSv4 обеспечивает методы аутентификации через GSS-API (Kerberos-аутентификация). Работает на клиенте и сервере.
  • rpc.svcgssd - Бес сервера NFSv4, который обеспечивает проверку подлинности клиента на стороне сервера.

portmap и протокол RPC (Sun RPC)

Не считая обозначенных выше пакетов, для корректной работы NFSv2 и v3 требуется дополнительный пакет portmap (в более новых дистрибутивах заменен на переименован в rpcbind ). Данный пакет обычно устанавливается автоматом с NFS как зависимый и реализует работу сервера RPС, другими словами отвечает за динамическое назначение портов для некоторых служб, зарегистрированных в RPC сервере.

Дословно, согласно документации - это сервер, который преобразует номера программ RPC (Remote Procedure Call) в номера портов TCP/UDP. portmap оперирует несколькими сущностями: RPC-вызовами или запросами, TCP/UDP портами, версией протокола (tcp или udp), номерами программ и версиями программ. Бес portmap запускается скриптом /etc/init.d/portmap до старта NFS-сервисов.

Коротко говоря, работа сервера RPC (Remote Procedure Call) заключается в обработке RPC-вызовов (т.н. RPC-процедур) от локальных и удаленных процессов.

Используя RPC-вызовы, сервисы регистрируют или убирают себя в/из преобразователя портов (он же отображатель портов, он же portmap, он же portmapper, он же, в новых версиях, rpcbind), а клиенты с помощью RPC-вызовов направляя запросы к portmapper получают подходящую информацию. Юзер-френдли наименования сервисов программ и соответствующие им номера определены в файле /etc/rpc.

Как какой-либо сервис отправил соответствующий запрос и зарегистрировал себя на сервере RPC в отображателе портов, RPC-сервер присваивает сопоставляет сервису TCP и UDP порты на которых запустился сервис и хранит в себе ядре соответствующюю информацию о работающем сервисе (о имени), уникальном номере сервиса (в согласовании с /etc/rpc) , о протоколе и порте на котором работает сервис и о версии сервиса и предоставляет обозначенную информацию клиентам по запросу. Сам преобразователь портов имеет номер программы (100000), номер версии - 2, TCP порт 100 одиннадцать и UDP порт 111.

Выше, при указании состава бесов сервера NFS я указал главные RPC номера программ. Я, наверняка, малость запутал Вас данным абзацем, поэтому произнесу основную фразу, которая должна внести ясность: основная функция отображателя портов заключается в том, чтобы по запросу клиента, который предоставил номер RPC-программы (или RPC-номер программы) и версию, вернуть ему (клиенту) порт, на котором работает запрошенная программа . Соответственно, если клиенту нужно обратиться к RPC с определенным номером программы, он сначала должен войти в контакт с процессом portmap на серверной машине и отыскать номер порта связи с необходимым ему обслуживанием RPC.

Работу RPC-сервера можно представить следующими шагами:

Для получения инфы от RPC-сервера употребляется утилита rpcinfo. При указании черт -p host программа выводит список всех зарегистрированных RPC программ на хосте host. Без указания хоста программа выведет сервисы на localhost. Пример:

ARCHIV ~ # rpcinfo -p прог-ма верс прото порт 100 тыщ Два tcp 100 одиннадцать portmapper 100 тыщ Два udp 100 одиннадцать portmapper 100 тыщ 20 четыре Один udp 50 девять тыщ четыреста 50 один status 100 тыщ 20 четыре Один tcp Шестьдесят тыщ восемьсот 70 два status 100 тыщ 20 один Один udp 40 четыре тыщи триста 10 nlockmgr 100 тыщ 20 один Три udp 40 четыре тыщи триста 10 nlockmgr 100 тыщ 20 один Четыре udp 40 четыре тыщи триста 10 nlockmgr 100 тыщ 20 один Один tcp 40 четыре тыщи восемьсот 50 один nlockmgr 100 тыщ 20 один Три tcp 40 четыре тыщи восемьсот 50 один nlockmgr 100 тыщ 20 один Четыре tcp 40 четыре тыщи восемьсот 50 один nlockmgr 100 тыщ три Два tcp Две тыщи 40 девять nfs 100 тыщ три Три tcp Две тыщи 40 девять nfs 100 тыщ три Четыре tcp Две тыщи 40 девять nfs 100 тыщ три Два udp Две тыщи 40 девять nfs 100 тыщ три Три udp Две тыщи 40 девять nfs 100 тыщ три Четыре udp Две тыщи 40 девять nfs 100 тыщ 5 Один udp 50 одна тыща триста 6 mountd 100 тыщ 5 Один tcp 40 одна тыща четыреста 5 mountd 100 тыщ 5 Два udp 50 одна тыща триста 6 mountd 100 тыщ 5 Два tcp 40 одна тыща четыреста 5 mountd 100 тыщ 5 Три udp 50 одна тыща триста 6 mountd 100 тыщ 5 Три tcp 40 одна тыща четыреста 5 mountd

Как видно, rpcinfo указывает (в столбиках слева на право) номер зарегистрированной программы, версию, протокол, порт и название.

С помощью rpcinfo можно удалить регистрацию программы или получить информацию об отдельном сервисе RPC (больше опций в man rpcinfo). Как видно, зарегистрированы бесы portmapper версии Два на udp и tcp портах, rpc.statd версии Один на udp и tcp портах, NFS lock manager версий 1,3,4, бес nfs сервера версии 2,3,4, а так же бес монтирования версий 1,2,3.

NFS сервер (точнее бес rpc.nfsd) получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS работает с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт Две тыщи 40 девять жестко закреплен за NFS в большинстве реализаций.

Работа протокола Network File System

Монтирование удаленной NFS

Процесс монтирования удаленной файловой системы NFS можно представить следующей схемой:

Описание протокола NFS при монтировании удаленного каталога:

  1. На сервере и клиенте запускается RPC сервер (обычно при загрузке), обслуживанием которого занимается процесс portmapper и регистрируется на порту tcp/111 и udp/111.
  2. Запускаются сервисы (rpc.nfsd,rpc.statd и др.), которые регистрируются на RPC сервере и регистрируются на случайных сетевых портах (если в настройках сервиса не задан статичный порт).
  3. команда mount на компьютере клиента отправляет ядру запрос на монтирование сетевого каталога с указанием типа файловой системы, хоста и практически - каталога, ядро отправляет сформировывает RPC-запрос процессу portmap на NFS сервере на порт udp/111 (если на клиенте не задана функция работать через tcp)
  4. Ядро сервера NFS опрашивает RPC о наличии беса rpc.mountd и возвращает ядру клиента сетевой порт, на котором работает бес.
  5. mount отправляет RPC запрос на порт, на котором работает rpc.mountd. На данный момент NFS сервер может проверить достоверность клиента основываясь на его IP адресе и номере порта, чтобы убедиться, можно ли этому клиенту смонтировать обозначенную файловую систему.
  6. Бес монтирования возвращает описание запрошенной файловой системы.
  7. Команда mount клиента выдает системный вызов mount, чтобы связать описатель файла, обретенный в шаге 5, с локальной точкой монтирования на хосте клиента. Описатель файла хранится в коде NFS клиента, и с этого момента хоть какое обращение пользовательских процессов к файлам на файловой системе сервера будет использовать описатель файла как стартовую точку.

Обмен данными меж клиентом и сервером NFS

Обыденный доступ к удаленной файловой системе можно описать следующей схемой:

Описание процесса обращения к файлу, расположенному на сервере NFS:

Настройка сервера NFS

Настройка сервера в целом заключается в задании локальных каталогов, разрешенных для монтирования удаленными системами в файле /etc/exports. Это действие называется экспорт иерархии каталогов . Основными источниками инфы об экспортированных каталогах служат следующие файлы:

  • /etc/exports - основной конфигурационный файл, хранящий в себе конфигурацию экспортированных каталогов. Используется при запуске NFS и утилитой exportfs.
  • /var/lib/nfs/xtab - содержит список каталогов, монтированных удаленными клиентами. Употребляется бесом rpc.mountd, когда клиент пробует смонтировать иерархию (создается запись о монтировании).
  • /var/lib/nfs/etab - список каталогов, которые могут быть смонтированы удаленными системами с указанием всех черт экспортированных каталогов.
  • /var/lib/nfs/rmtab - список каталогов, которые не разэкспортированы в данный момент.
  • /proc/fs/nfsd - особенная файловая система (ядро 2.6) для управления NFS сервером.
    • exports - список активных экспортированных иерархий и клиентов, которым их экспортировали, также свойства. Ядро получает данную информацию из /var/lib/nfs/xtab.
    • threads - содержит число потоков (также можно изменять)
    • с помощью filehandle можно получить указатель на файл
    • и др...
  • /proc/net/rpc - содержит "сырую" (raw) статистику, которую можно получить с помощью nfsstat, также различные кеши.
  • /var/run/portmap_mapping - информация о зарегистрированных в RPC сервисах

Прим: вообще, в интернете куча трактовок и формулировок назначения файлов xtab, etab, rmtab, кому верить - не знаю #image.jpg Даже на http://nfs.sourceforge.net/ трактовка не однозначна.

Настройка файла /etc/exports

В ординарном случае, файл /etc/exports является единственным файлом, требующим редактирования для функции NFS-сервера. Данный файл управляет следующими свойствами:

  • Какие клиенты могут обращаться к файлам на сервере
  • К каким иерархиям каталогов на сервере может обращаться каждый клиент
  • Как пользовательские имена клиентов будут отображаться на локальные имена юзеров

Неважно какая строка файла exports имеет следующий формат:

точка_экспорта клиент1(функции) [клиент2(функции) ...]

Где точка_экспорта абсолютный путь экспортируемой иерархии каталогов, клиент1 - n имя 1-го или более клиентов или Ip-адресов, разбитые пробелами, которым разрешено монтировать точку_экспорта . Функции обрисовывают правила монтирования для клиента, обозначенного перед опциями.

Вот обыденный пример конфигурации файла exports:

ARCHIV ~ # cat /etc/exports /archiv1 files(rw,sync) 10.0.0.1(ro,sync) 10.0.230.1/24(ro,sync)

В данном примере компьютерам files и 10.0.0.1 разрешен доступ к точке экспорта /archiv1, при всем этом, хосту files на чтение/запись, а для хоста 10.0.0.1 и подсети 10.0.230.1/24 доступ только на чтение.

Описания хостов в /etc/exports допускается в следующем формате:

  • Имена отдельных узлов описываются, как files или files.DOMAIN.local.
  • Описание маски доменов делается в следующем формате: *DOMAIN.local включает все узлы домена DOMAIN.local.
  • Подсети задаются в виде пар адрес IP/маска. Например: 10.0.0.0/255.255.255.0 включает все узлы, адреса которых начинаются с 10.0.0.
  • Задание имени сетевой группы @myclients имеющей доступ к ресурсу (при использовании сервера NIS)

Общие функции экспорта иерархий каталогов

В файле exports употребляются следующие общие функции (сначала указаны функции применяемые по-умолчанию в большинстве систем, в скобках - не по-умолчанию):

  • auth_nlm (no_auth_nlm) или secure_locks (insecure_locks) - указывает, что сервер должен добиваться аутентификацию запросов на блокировку (с помощью протокола NFS Lock Manager (диспетчер блокировок NFS)).
  • nohide (hide) - если сервер экспортирует две иерархии каталогов, при всем этом одна вложенна (примонтированна) в другую. Клиенту необходимо разумеется смонтировать вторую (дочернюю) иерархию, по другому точка монтирования дочерней иерархии будет смотреться как пустой каталог. Функция nohide приводит к появлению 2-ой иерархии каталогов без тривиального монтирования. (прим: я данную опцию так и не смог вынудить работать...)
  • ro (rw) - Разрешает только запросы на чтение (запись). (в конечном счете - может быть прочитать/записать или нет определяется на основании прав файловой системы, при всем этом сервер не способен отличить запрос на чтение файла от запроса на выполнение, поэтому разрешает чтение, если у пользователя есть права на чтение или выполнение.)
  • secure (insecure) - просит, чтобы запросы NFS поступали с защищенных портов (< 1024), чтобы программа без прав root не могла монтировать иерархию каталогов.
  • subtree_check (no_subtree_check) - Если экспортируется подкаталог фаловой системы, но не вся файловая система, сервер проверяет, находится ли запрошенный файл в экспортированном подкаталоге. Отключение проверки уменьшает безопасность, но увеличивает скорость передачи данных.
  • sync (async) - указывает, что сервер должен отвечать на запросы только после записи на диск конфигураций, выполненных этими запросами. Функция async указывает серверу не ждать записи инфы на диск, что наращивает производительность, но понижает надежность, т.к. в случае обрыва соединения или отказа оборудования возможна утрата инфы.
  • wdelay (no_wdelay) - указывает серверу задерживать выполнение запросов на запись, если ожидается последующий запрос на запись, записывая данные более большими блоками. Это наращивает производительность при отправке больших очередей команд на запись. no_wdelay указывает не откладывать выполнение команды на запись, что может быть полезно, если сервер получает неограниченное количество команд не связанных совместно.

Экспорт символических ссылок и файлов устройств. При экспорте иерархии каталогов, содержащих символические ссылки, необходимо, чтобы объект ссылки был доступен клиентской (удаленной) системе, другими словами должно выполняться одно из следующих правил:

  • в клиентской файловой системе должен существовать объект ссылки
  • необходимо экспортировать и смонтировать объект ссылки

Файл устройства относится к интерфейсу ядра Linux. При экспорте файла устройства экспортируется этот интерфейс. Если клиентская система не имеет устройства такого же типа, то экспортированное устройство не будет работать.

В клиентской системе, при монтировании NFS объектов можно использовать опцию nodev, чтобы файлы устройств в монтируемых каталогах не использовались.

Функции по умолчанию в разных системах могут различаться, их можно посмотреть в файле /var/lib/nfs/etab. После описания экспортированного каталога в /etc/exports и перезапуска сервера NFS все недостающие функции (читай: функции по-умолчанию) будут отражены в файле /var/lib/nfs/etab.

Функции отображения (соответствия) идентификаторов юзеров

Для большего понимания нижесказанного я бы посоветовал ознакомиться со статьей Управление пользователями Linux. Каждый пользователь Linux имеет свои UID и главный GID, которые описаны в файлах /etc/passwd и /etc/group.

Сервер NFS считает, что операционная система удаленного узла выполнила проверку подлинности юзеров и назначила им корректные идентификаторы UID и GID. Экспортирование файлов дает пользователям системы клиента такой же доступ к этим файлам, как если бы они регистрировались напрямую на сервере. Соответственно, когда клиент NFS посылает запрос серверу, сервер употребляет UID и GID для идентификации пользователя в локальной системе, что может приводить к некоторым проблемам:


Следующие функции задают правила отображения удаленных юзеров в локальных:

Пример использования файла маппинга юзеров:

ARCHIV ~ # cat /etc/file_maps_users # Маппинг юзеров # remote local comment uid 0-50 Одна тыща два # сопоставление юзеров с удаленным UID 0-50 к локальному UID Одна тыща два gid 0-50 Одна тыща два # сопоставление юзеров с/span удаленным GID 0-50 к локальному GID 1002

Управление сервером NFS

Управление сервером NFS осуществляется с помощью следующих утилит:

  • nfsstat
  • showmsecure (insecure)ount
  • exportfs

nfsstat: статистика NFS и RPC

Утилита nfsstat позволяет посмотреть статистику RPC и NFS серверов. Функции команды можно посмотреть в man nfsstat.

showmount: вывод инфы о состоянии NFS

Утилита showmount запрашивает бес rpc.mountd на удалённом хосте о смонтированных файловых системах. По умолчанию выдаётся отсортированный список клиентов. Ключи:

  • --all - выдаётся список клиентов и точек монтирования с указанием куда клиент примонтировал каталог. Эта информация может быть не надежной.
  • --directories - выдаётся список точек монтирования
  • --exports - выдаётся список экспортируемых файловых систем исходя из убеждений nfsd

При запуске showmount без аргументов, на консоль будет выведена информация о системах, которым разрешено монтировать локальные сборники. Например, хост ARCHIV нам предоставляет список экспортированных каталогов с IP адресами хостов, которым разрешено монтировать обозначенные сборники:

FILES ~ # showmount --exports archiv Export list for archiv: /archiv-big 10.0.0.2 /archiv-small 10.0.0.2

Если указать в аргументе имя хоста/IP, то будет выведена информация о данном хосте:

ARCHIV ~ # showmount files clnt_create: RPC: Program not registered # данное сообщение говорит нам, что на хосте FILES бес NFSd не запущен

exportfs: управление экспортированными каталогами

Данная команда обслуживает экспортированные сборники, данные в файле /etc/exports , точнее будет написать не обслуживает, а синхронизирует с файлом /var/lib/nfs/xtab и удаляет из xtab несуществующие. exportfs делается при запуске беса nfsd с аргументом -r. Утилита exportfs в режиме ядра 2.6 говорит с бесом rpc.mountd через файлы каталога /var/lib/nfs/ и не говорит с ядром напрямую. Без черт выдаёт список текущих экспортируемых файловых систем.

Свойства exportfs:

  • [клиент:имя-каталога] - добавить или удалить обозначенную файловую систему для обозначенного клиента)
  • -v - выводить больше инфы
  • -r - переэкспортировать все сборники (синхронизировать /etc/exports и /var/lib/nfs/xtab)
  • -u - удалить из списка экспортируемых
  • -a - добавить или удалить все файловые системы
  • -o - функции через запятую (аналогичен опциям применяемым в /etc/exports; т.о. можно изменять функции уже смонтированных файловых систем)
  • -i - не использовать /etc/exports при добавлении, только свойства текущей командной строки
  • -f - сбросить список экспортируемых систем в ядре 2.6;

Клиент NFS

До того как обратиться к файлу на удалённой файловой системе клиент ( клиента) должен смонтировать её и получить от сервера указатель на неё . Монтирование NFS может производиться с помощью команды mount или с помощью 1-го из расплодившихся автоматических монтировщиков (amd, autofs, automount, supermount, superpupermount). Процесс монтирования отлично продемонстрирована выше на иллюстрации.

На клиентах NFS никаких бесов запускать не нужно, функции клиента делает модуль ядра kernel/fs/nfs/nfs.ko, который используется при монтировании удаленной файловой системы. Экспортированные сборники с сервера могут устанавливаться на клиенте следующими способами:

  • вручную, с помощью команды mount
  • автоматом при загрузке, при монтировании файловых систем, обрисованных в /etc/fstab
  • автоматом с помощью беса autofs

3-ий способ с autofs в данной статье я рассматривать не буду, ввиду его большой инфы. Может быть в следующих статьях будет отдельное описание.

Монтирование файловой системы Network Files System командой mount

Пример использования команды mount представлен в посте Команды управления блочными устройствами. Тут я рассмотрю пример команды mount для монтирования файловой системы NFS:

FILES ~ # mount -t nfs archiv:/archiv-small /archivs/archiv-small FILES ~ # mount -t nfs -o ro archiv:/archiv-big /archivs/archiv-big FILES ~ # mount ....... archiv:/archiv-small on /archivs/archiv-small type nfs (rw,addr=10.0.0.6) archiv:/archiv-big on /archivs/archiv-big type nfs (ro,addr=10.0.0.6)

1-ая команда монтирует экспортированный каталог /archiv-small на сервере archiv в локальную точку монтирования /archivs/archiv-small с опциями по умолчанию (другими словами для чтения и записи).

Хотя команда mount в последних дистрибутивах умеет обдумывать какой тип файловой системы употребляется и без указания типа, все же указывать параметр -t nfs лучше. 2-ая команда монтирует экспортированный каталог /archiv-big на сервере archiv в локальный каталог /archivs/archiv-big с опцией только для чтения (ro). Команда mount без черт наглядно указывает нам результат монтирования. Не считая функции только чтения (ro), может быть задать другие главные функции при монтировании NFS :

  • nosuid - Данная функция запрещает исполнять setuid программы из смонтированного каталога.
  • nodev (no device - не устройство) - Данная функция запрещает использовать в качестве устройств символьные и блочные особенные файлы.
  • lock (nolock) - Разрешает блокировку NFS (по умолчанию). nolock отключает блокировку NFS (не запускает бес lockd) и комфортабельна при работе со старыми серверами, не поддерживающими блокировку NFS.
  • mounthost=имя - Имя хоста, на котором запущен бес монтирования NFS - mountd.
  • mountport=n - Порт, используемый бесом mountd.
  • port=n - порт, используемый для подключения к NFS серверу (по умолчанию 2049, если бес rpc.nfsd не зарегистрирован на RPC-сервере). Если n=0 (по умолчанию), то NFS посылает запрос к portmap на сервере, чтобы отыскать порт.
  • rsize=n (read block size - размер блока чтения) - Количество байтов, читаемых за один раз с NFS-сервера. Стандартно - 4096.
  • wsize=n (write block size - размер блока записи) - Количество байтов, записываемых за один раз на NFS-сервер. Стандартно - 4096.
  • tcp или udp - Для монтирования NFS использовать протокол TCP или UDP соответственно.
  • bg - При утраты доступа к серверу, повторять пробы в фоновом режиме, чтобы не перекрыть процесс загрузки системы.
  • fg - При утраты доступа к серверу, повторять пробы в приоритетном режиме. Данный параметр может заблокировать процесс загрузки системы повторениями попыток монтирования. По этой причине параметр fg употребляется в основном при отладке.

Функции, действующие на кэширование атрибутов при монтировании NFS

Атрибуты файлов , хранящиеся в inod (индексных дескрипторах), такие как время модификации, размер, жесткие ссылки, владелец, обычно изменяются изредка для обыденных файлов и еще реже - для каталогов. Многи программы, например ls, обращаются к файлам только для чтения и не меняют атрибуты файлов или содержимое, но затрачивают ресурсы системы на дорогостоящие сетевые операции.

Чтобы избежать ненужных издержек ресурсов, можно кэшировать данные атрибуты . Ядро употребляет время модификации файла, чтобы отыскать устарел ли кэш, сравнивая время модификации в кэше и время модификации самого файла. Кэш атрибутов периодически обновляется в согласовании с данными параметрами:

  • ac (noac) (attrebute cache - кэширование атрибутов) - Разрешает кэширование атрибутов (по-умолчанию). Хотя функция noac замедляет работу сервера, она позволяет избежать устаревания атрибутов, когда несколько клиентов активно записывают информацию в общию иерархию.
  • acdirmax=n (attribute cache directory file maximum - кэширование атрибута максимум для файла каталога) - Наибольшее количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию Шестьдесят сек.)
  • acdirmin=n (attribute cache directory file minimum - кэширование атрибута минимум для файла каталога) - Маленькое количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 30 сек.)
  • acregmax=n (attribute cache regular file maximum - кэширование атрибута максимум для обыденного файла) - Максимаьное количество секунд, которое NFS ожидает до обновления атрибутов обыденного файла (по-умолчанию Шестьдесят сек.)
  • acregmin=n (attribute cache regular file minimum- кэширование атрибута минимум для обыденного файла) - Маленькое количество секунд, которое NFS ожидает до обновления атрибутов обыденного файла (по-умолчанию Три сек.)
  • actimeo=n (attribute cache timeout - таймаут кэширования атрибутов) - Заменяет значения для всех вышуказаных опций. Если actimeo не задан, то вышеуказанные значения принимают значения по умолчанию.

Функции обработки ошибок NFS

Следующие функции управляют действиями NFS при отсутствии ответа от сервера или в случае возникновения ошибок ввода/вывода:

  • fg (bg) (foreground - передний план, background - задний план) - Создавать пробы монтирования отказавшей NFS на переднем плане/в фоне.
  • hard (soft) - выводит на консоль сообщение "server not responding" при достижении таймаута и продолжает пробы монтирования. При данной функции soft - при таймауте докладывает вызвавшей операцию программе об ошибке ввода/вывода. (опцию soft советуют не использовать)
  • nointr (intr) (no interrupt - не прерывать) - Не разрешает сигналам прерывать файловые операции в жестко смонтированной иерархии каталогов при достижении большого таймаута. intr - разрешает прерывание.
  • retrans=n (retransmission value - значение повторной передачи) - После n малых таймаутов NFS генерирует большой таймаут (по-умолчанию 3). Большой таймаут прекращает выполнение операций или выводит на консоль сообщение "server not responding", зависимо от указания функции hard/soft.
  • retry=n (retry value - значение повторно пробы) - Количество минут повторений службы NFS операций монтирования, до того как сдаться (по-умолчанию 10000).
  • timeo=n (timeout value - значение таймаута) - Количество 10-х толикой секунды ожидания службой NFS до повторной передачи в случае RPC или малого таймаута (по-умолчанию 7). Это значение растет при каждом таймауте до большего значения Шестьдесят секунд или до пришествия большого таймаута. В случае занятой сети, медленного сервера или при прохождении запроса через несколько маршрутизаторов или шлюзов увеличение этого значения может повысить производительность.

Автоматическое монтирование NFS при загрузке (описание файловых систем в /etc/fstab)

Описание файла /etc/fstab я затрагивал в соответствующей статье. В текущем примере я рассмотрю несколько примеров монтирования файловых систем NFS с описанием опций:

FILES ~ # cat /etc/fstab | grep nfs archiv:/archiv-small /archivs/archiv-small nfs rw,timeo=4,rsize=16384,wsize=16384 Нуль Нуль nfs-server:/archiv-big /archivs/archiv-big nfs rw,timeo=50,hard,fg Нуль 0

1-ый пример монтирует файловую систему /archiv-small с хоста archiv в точку монтирования /archivs/archiv-small, тип файловой системы указан nfs (всегда необходимо указывать для данного типа), файловая система монтирована с опцией для чтения, записи (rw).

Хост archiv подключен по быстрому локальному каналу, поэтому для роста производительности параметр timeo уменьшен и существенно увеличены значения rsize и wsize. Поля для программ dump и fsck заданы в ноль, чтобы данные программы не использовали файловую систему, примонтированную по NFS.

2-ой пример монтирует файловую систему /archiv-big с хоста nfs-server. Т.к. к хосту nfs-server мы подключены по медленному соединению, параметр timeo увеличен до 5 сек (50 10-х толикой сек), а так же жестко задан параметр hard, чтобы NFS продолжала перемонтировать файловую систему после большого таймаута, так же задан параметр fg, чтобы при загрузке системы и недоступности хоста nfs-server не вышло зависания.

До того как сохранять конфигурации в /etc/fstab, обязательно попробуйте смонтировать вручную и убедитесь, что всё работает!!!

Повышение производительности NFS

На производительность NFS могут влиять несколько черт, в особенности при работе через медленные соединения. При работе с медленными и высоконагруженными соединениями, лучше использовать параметр hard, чтобы таймауты не привели к прекращению работы программ. Но необходимо обдумывать, что если смонтировать файловую систему через NFS с параметром hard через fstab, а удаленный хост окажется недоступен, то при загрузке системы произойдет зависание.

Так же, одним из самых легких способов роста производительности NFS - увеличение количества байтов, передаваемых за один раз. Размер в Четыре тыщи девяносто 6 б очень мал для современных быстрых соединений, увеличивая это значение до Восемь тыщ 100 девяносто два и более можно экспериментальным способом найти наилучшую скорость.

Так же, не стоит упускать из внимания и функции тайм-аутов . NFS ожидает ответа на пересылку данных в течении промежутка времени, обозначенного в функции timeo, если ответ за это время не получен, то делается повторная пересылка.

Но на загруженных и медленных соединениях это время может быть меньше времени реакции сервера и способности каналов связи, в конечном итоге чего могут быть излишние повторные пересылки, замедляющие работу.По умолчанию, timeo равно 0,7 сек (700 миллисекунд). после неответа в течении Семьсот мс сервер совершит повторную пересылку и удвоит время ожидания до 1,4 сек., увеличение timeo будет продолжаться до большего значения в Шестьдесят сек. Далее зависимо от параметра hard/soft произойдет какое-либо действие (см.выше).

Подобрать наилучший timeo для определенного значения передаваемого пакета (значений rsize/wsize), можно с помощью команды ping:

FILES ~ # ping -s 30 две тыщи семьсот шестьдесят восемь archiv PING archiv.DOMAIN.local (10.0.0.6) 32768(32796) bytes of data. 30 две тыщи семьсот 70 6 bytes from archiv.domain.local (10.0.0.6): icmp_req=1 ttl=64 time=0.931 ms 30 две тыщи семьсот 70 6 bytes from archiv.domain.local (10.0.0.6): icmp_req=2 ttl=64 time=0.958 ms 30 две тыщи семьсот 70 6 bytes from archiv.domain.local (10.0.0.6): icmp_req=3 ttl=64 time=1.03 ms 30 две тыщи семьсот 70 6 bytes from archiv.domain.local (10.0.0.6): icmp_req=4 ttl=64 time=1.00 ms 30 две тыщи семьсот 70 6 bytes from archiv.domain.local (10.0.0.6): icmp_req=5 ttl=64 time=1.08 ms ^C --- archiv.DOMAIN.local ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4006ms rtt min/avg/max/mdev = 0.931/1.002/1.083/0.061 ms

Как видно, при отправке пакета размером 30 две тыщи семьсот шестьдесят восемь (32Kb) время его путешествия от клиента до сервера и вспять плавает в районе Один миллисекунды. Если данное время будет зашкаливать за Двести мс, то стоит задуматься о повышении значения timeo, чтобы оно превышало значение обмена в три-четыре раза. Соответственно, данный тест лучше делать во время сильной загрузки сети

Запуск NFS и настройка Firewall

Заметка скопипсчена с блога http://bog.pp.ru/work/NFS.html, за что ему большущее спасибо!!!

Запуск сервера NFS, монтирования, блокировки, квотирования и статуса с "правильными" портами (для сетевого экрана)

  • лучше предварительно размонтировать все ресурсы на клиентах
  • остановить и запретить запуск rpcidmapd, если не планируется внедрение NFSv4: chkconfig --level Триста 40 5 rpcidmapd off service rpcidmapd stop
  • если нужно, то разрешить запуск сервисов portmap, nfs и nfslock: chkconfig --levels Триста 40 5 portmap/rpcbind on chkconfig --levels Триста 40 5 nfs on chkconfig --levels Триста 40 5 nfslock on
  • если нужно, то остановить сервисы nfslock и nfs, запустить portmap/rpcbind, выгрузить модули service nfslock stop service nfs stop service portmap start # service rpcbind start umount /proc/fs/nfsd service rpcidmapd stop rmmod nfsd service autofs stop # где-то позднее его необходимо запустить rmmod nfs rmmod nfs_acl rmmod lockd
  • открыть порты в iptables
    • для RPC: UDP/111, TCP/111
    • для NFS: UDP/2049, TCP/2049
    • для rpc.statd: UDP/4000, TCP/4000
    • для lockd: UDP/4001, TCP/4001
    • для mountd: UDP/4002, TCP/4002
    • для rpc.rquota: UDP/4003, TCP/4003
  • для сервера rpc.nfsd добавить в /etc/sysconfig/nfs строку RPCNFSDARGS="--port 2049"
  • для сервера монтирования добавить в /etc/sysconfig/nfs строку MOUNTD_PORT=4002
  • для функции rpc.rquota для новых версий необходимо добавить в /etc/sysconfig/nfs строку RQUOTAD_PORT=4003
  • для функции rpc.rquota необходимо для старых версий (все таки, необходимо иметь пакет quota 3.08 или свежее) добавить в /etc/services rquotad 4003/tcp rquotad 4003/udp
  • проверит адекватность /etc/exports
  • запустить сервисы rpc.nfsd, mountd и rpc.rquota (заодно запускаются rpcsvcgssd и rpc.idmapd, если не забыли их удалить) service nfsd start или в новых версиях service nfs start
  • для сервера блокировки для новых систем добавить в /etc/sysconfig/nfs строки LOCKD_TCPPORT=4001 LOCKD_UDPPORT=4001
  • для сервера блокировки для старых систем добавить непосредственно в /etc/modprobe[.conf]: options lockd nlm_udpport=4001 nlm_tcpport=4001
  • привязать сервер статуса rpc.statd к порту Четыре тыщи (для старых систем в /etc/init.d/nfslock запускать rpc.statd с ключом -p 4000) STATD_PORT=4000
  • запустить сервисы lockd и rpc.statd service nfslock start
  • убедиться, что все порты привязались нормально с помощью "lsof -i -n -P" и "netstat -a -n" (часть портов употребляется модулями ядра, которые lsof не видит)
  • если перед "перестройкой" сервером пользовались клиенты и их не удалось размонтировать, то придётся перезапустить на клиентах сервисы автоматического монтирования (am-utils, autofs)

Пример конфигурации NFS сервера и клиента

Конфигурация сервера

Если вы желаете сделать ваш разделённый NFS каталог открытым и с правом записи, вы можете использовать опцию all_squash в композиции с опциями anonuid и anongid. Например, чтобы установить права для пользователя "nobody" в группе "nobody", вы можете сделать следующее:

ARCHIV ~ # cat /etc/exports # Доступ на чтение и запись для клиента на 192.168.0.100, с доступом rw для пользователя Девяносто девять с gid Девяносто девять /files 192.168.0.100(rw,sync,all_squash,anonuid=99,anongid=99)) # Доступ на чтение и запись для клиента на 192.168.0.100, с доступом rw для пользователя Девяносто девять с gid Девяносто девять /files 192.168.0.100(rw,sync,all_squash,anonuid=99,anongid=99))

Это также означает, что если вы желаете разрешить доступ к обозначенной директории, nobody.nobody должен быть владельцем разделённой директории:

# chown -R nobody.nobody /files

Конфигурация клиента

На клиенте необходимо примонтировать удаленный каталогудобным способом, например командой mount:

FILES ~ # mount -t nfs archiv:/files /archivs/files

Резюме

Фух... Статья завершена. На данный момент мы изучили что такое Network File System и с чем ее едят, в следующей статье попробую сделать HOWTO с аутентификацией Kerberos. Надеюсь материал вышел доходчивым и нужным.

Буду рад Вашим дополнениям и комментариям!

NFS HOWTO, nfs.sourceforge, man nfs? man mount, man exports

RFC Одна тыща девяносто четыре - NFSv1, v2
RFC Одна тыща восемьсот тринадцать - NFSv3
RFC Три тыщи 500 30 - NFSv4
RFC 5 тыщ 600 шестьдесят один - NFSv4.1
NFS HOWTO
nfs.sourceforge.net
man mount
man exports



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные