Как своими руками сделать предварительный усилитель. Высококачественный предусилитель «NATALY». Мой вариант. Видео: межблочные провода из витой пары своими руками

Современные цифровые источники звука (CD-проигрыватели, ЦАПы и т.п.) имеют очень низкий уровень шумов. Гораздо ниже, чем винил или магнитная лента. Из-за этого требования к шумам последующего усилительного тракта на сегодняшний день стали гораздо выше, чем в эпоху аналогового звука. В свете этих требований при разработке описанного ниже предварительного усилителя в первую очередь ставилась задача получения качественного звучания при ультранизком уровне шумов без применения экзотических или дорогостоящих компонентов.

В большинстве каскадов автор применил свои любимые операционные усилители NE5532 , но в некоторых узлах используются LM4562 , так как в последнее время они стали доступнее и позволяют получить гораздо меньшие искажения при работе на низкоомную нагрузку.

Что за меломан (и уж тем более аудиофил) без винила? Именно для них предусилитель оснащен двумя фонкорректорами под разные типы звукоснимателей. Кроме того, конструкция имеет регулятор тембра , наглядный индикатор уровня и симметричные выходы , что сегодня стало практически стандартом для высококачественной аудио-аппаратуры .

Структурная схема предусилителя показана на рисунке:

Увеличение по клику

Все модули собраны на отдельных печатных платах, что упрощает их размещение в корпусе и облегчает коммутацию.
В этой части цикла статей приводится описание схемы непосредственно усилителя с регуляторами громкости, баланса и тембра, а также организации симметричного выхода.

Принципиальная схема модуля предварительного усиления:

Увеличение по клику

Все сопротивления (не только резисторы, но и сопротивления активных компонентов, например сопротивление базы транзистора) генерируют шумы , уровень которых зависит от величины сопротивления и температуры. Так как повлиять на температуру в помещении прослушивания довольно сложно, то единственный способ уменьшить шумы сопротивлений — это уменьшать величину самого сопротивления. Отсюда вытекает главная особенность представленной схемы — использование низкоомных резисторов на всём пути звукового сигнала.

Если для постоянных резисторов выбор низкоомных номиналов не представляет проблем, то для переменных резисторов (для регуляторов громкости, баланса и тембра) номинальный ряд существенно ограничен. Обычно в этих цепях можно увидеть переменные резисторы на 47кОм, 22кОм, в лучшем случае 10 кОм. В данной конструкции Дуглас Селф применил переменные резисторы на 1кОм — это, пожалуй, минимальный номинал из доступных среди переменных резисторов.

Кстати, вот характеристики, которых удалось достичь:

(Измерения проводились при напряжении питания 17В, при отключенных регуляторах тембра, с использованием симметричных входов и выходов)

Коэффициент гармоник+шум (входной сигнал 0,2В, выходной — 1В) 0,0015% (1 kHz, B = 22 Hz до 22 kHz)
0,0028% (20 kHz, B = 22 Hz до 80 kHz)
Коэффициент гармоник+шум (входной сигнал 2В, выходной — 1В) 0,0003% (1 kHz, B = 22 Hz до 22 kHz)

0,0009% (20 kHz, B = 22 Hz до 80 kHz)

Отношение сигнал/шум (при входном сигнале 0,2В) 96 dB (B = 22 Hz до 22 kHz) 98,7 dBA
Полоса воспроизводимых частот: 0,2 Hz до 300 kHz
Максимальный уровень выходного сигнала (при 0,2В входного): 1,3 В
Регулировка баланса +3,6 dB до -6,3 dB
Регулировка низких частот ±8 dB (100 Hz)
Регулировка высоких частот ±8,5 dB (10 kHz)
Разделение каналов (R->L) -98 dB (1 kHz) -74 dB (20 kHz)
Разделение каналов (L->R) -102 dB (1 kHz) -80 dB (20 kHz)

Использование низкоомных резисторов также позволяет снизить смещение операционных усилителей входными токами, что также снижает шум, вызванный колебаниями токов ОУ.

Для снижения шумов активных компонентов в схеме использовано параллельное соединение каскадов . Конечно, можно было бы использовать современные малошумящие ОУ типа AD797 . Но это будет значительно дороже и сложнее (так как в одном корпусе содержится только один ОУ). Обращаю внимание, что речь идёт не о параллельном соединении микросхем (когда их напаивают этажеркой друг на друга), а о параллельном соединении усилительных каскадов. Только в этом случае шумы усилительных элементов будут некоррелируемые, за счёт чего общий уровень шума уменьшается на 3дБ при запараллеливании 2-х каскадов. При параллельном соединении 4-х каскадах шум уменьшается на 6дБ, т.е. в два раза.

Если запараллелить 8 каскадов, то шум уменьшится на 9 дБ, но для такого выигрыша затраты получаются неоправдано высоки.

Из-за применения низкоомных резисторов в регуляторе тембра номиналы конденсаторов получились гораздо больше привычных. Но сегодня это не является проблемой для современной элементной базы.

Линейный вход и регулятор баланса.

Для снижения шумов и помех непосредственно на входе усилителя установлен фильтр R1C1 и R2C2 . Буферные каскады IC1A и IC1B обеспечивают входное сопротивление порядка 50кОм и улучшают подавление синфазных помех. Непосредственно усилительный каскад собран на LM4562 (IC2A), коэффициент усиления которого регулируется потенциометром P1A. Этот же потенциометр в правом канале включен «противофазно» левому, за счет чего получается регулировка баланса. Обратная связь в каскаде реализована через два параллельных буфера IC3A и IC3b, за счёт чего достигается неизменность коэффициента усиления каскада независимо от изменения нагрузки. Кроме того, такое решение снижает уровень шума и обеспечивает низкое выходное сопротивление.

Типовая реализация регулятора баланса обычно негативно влияет на сцену и «виртуальное» расположение инструментов, из-за чего довольно редко встречается в Hi-End аппаратуре. Решение данного узла, предложенное Дугласом Селфом, не имеет этого недостатка.

Уровень шума этой части предусилителя составляет всего -109 дБ в среднем положении регулятора баланса, -106 дБ при максимальном и -116 дБ при минимальном положениях регулятора (в полосе частот 22 Гц до 22 кГц).

Регулятор тембра.

Несмотря на то, что выглядит регулятор несколько необычно, тем не менее здесь применена классическая схема регулятора тембра Баксандалла. Как отмечалось выше из-за низких номиналов переменных сопротивлений номиналы конденсаторов получаются существенно больше «типовых» значений.

Конденсатор С7 (1 мкФ) определяет нижнюю частоту регулировки тембра, а конденсаторы C8 и C9 имеют значение 100 нФ и определяют частоту регулировки тембра на ВЧ. При желании глубину регулировки тембра можно увеличить до ± 10 дБ. За счет элементов IC4 исключено взаимное влияние цепей НЧ и ВЧ при регулировании тембров.

Не смотря на большие габариты и высокую стоимость, для этой части схемы настоятельно рекомендуется применение полипропиленовых конденсаторов.

Уровень шума регулятора тембра составляет всего -113 дБ в среднем положении регуляторов.

Реле RE1 служит для отключения регулятора тембра, если в нём нет необходимости. В этом случае сигнал снимается с выхода IC2A и поступает напрямую на вход IC9B в обход регулятора тембра. Чтобы избежать щелчков при коммутации служит резистор R18. Для снижения перекрестных помех коммутация в каждом канале осуществляется отдельным реле. В этом случае контактные группы реле можно запараллелить, что снизит сопротивление контактов и дополнительно повысит надёжность этой части схемы.

Активный регулятор громкости.

Регулятор громкости также реализован по идее Питера Баксандалла, что во-первых позволило получить сверхнизкий уровень шума (особенно на малых громкостях), а во-вторых получить логарифмическую характеристику регулирования при использовании потенциометров с линейной зависимостью сопротивления от угла поворота. Максимальное усиление составляет +16 дБ, при этом точка 0 дБ получается в среднем положении потенциометра.

Четыре соединённых параллельно усилителя, как отмечалось выше, служат для снижения уровня шума на 6 дБ. Уровень собственных шумов такого регулятора составляет -101 дБ при максимальном усилении и -109 дБ при усилении 0 дБ. На практике регулятор громкости обычно устанавливается в положении -20 дБ, тогда уровень шума составит -115 дБ, который существенно ниже порога слышимости.

Чтобы вы могли оценить качество каждого каскада для них были приведены собственные уровни шумов. Результирующий уровень шума данного предусилителя, как нетрудно догадаться, будет несколько варьироваться в зависимости от положения потенциометров.

Симметричный выход реализован за счёт фазоинвертора на ОУ IC9A и имеет двойную амплитуду сигнала по сравнению с несимметричным. Впрочем, это нормально для профессиональной аудиотехники.

Конструкция и настройка.

Размещение элементов усилителя на плате:

Увеличение по клику

При сборке сначала запаиваются резисторы, а затем остальные компоненты.
Джампер JP1 предназначен для подбора оптимального подключения земли винил-корректора (есть аналогичные джамперы на платах MC / MD). Не забудьте их подключить. Место подключение подбирается экспериментально после сборки конструкции в корпусе.

Фото собранной платы:

Увеличение по клику

Данный блок настройки не требует.
Частотные характеристики усилителя и регулятора тембра:

Увеличение по клику

Список элементов:

Резисторы:
(1% точность; металло-плёночные; 0.25W)
R1,R2,R39,R40 = 100Ohm
R3-R6,R41-R44,R78,R79 = 100kOhm
R7-R12,R16,R17,R21-R24,R33,R34,
R45-R50,R54,R55,R59-R62,R71,R72 = 1kOhm
R13,R51 = 470Ohm
R14,R15,R52,R53 = 430Ohm
R18,R35,R36,R56,R73,R74 = 22kOhm
R19,R20,R57,R58 = 20Ohm
R25-R28,R63-R66 = 3.3kOhm
R29-R32,R67-R70 = 10Ohm
R37,R38,R75,R76 = 47Ohm
R77 = 120Ohm
P1,P2,P3,P4 = 1kOhm, 10%, 1W, stereo potentiometer, линейный, например Vishay Spectrol cermet type 14920F0GJSX13102KA. или, Vishay Spectrol conductive plastic type 148DXG56S102SP.

Конденсаторы:
C1,C2,C10-C14,C26,C27,C35-C39 = 100pF 630V, 1%, polystyrene, axial
C3,C4,C28,C29 = 47µF 35V, 20%, неполярный, диаметром 8mm, расстояние между выводами 3.5mm, например Multicomp p/n NP35V476M8X11.5
C5,C6,C30,C31 = 470pF 630V, 1%, polystyrene, axial
C7,C32 = 1µF 250V, 5%, polypropylene, расстояние между выводами 15mm
C8,C9,C33,C34 = 100nF 250V, 5%, polypropylene, lead spacing 10mm
C15,C16,C40,C41 = 220µF 35V, 20%, неполярные, диаметром 13mm,расстояние между выводами 5mm, например Multicomp p/n NP35V227M13X20
C17-C25,C42-C50 = 100nF 100V, 10%, расстояние между выводами 7.5mm
C51 = 470nF 100V, 10%, расстояние между выводами 7.5mm
C52,C53 = 100µF 25V, 20%, диаметр 6.3mm, расстояние между выводами 2.5mm

Микросхемы:
IC1,IC3,IC5-IC10,IC12,IC14-IC18 = NE5532, например ON Semiconductor type NE5532ANG
IC2,IC4,IC11,IC13 = LM4562, например National Semiconductor type LM4562NA/NOPB

Разное:
K1-K4 = 4-х контактный разъём, шаг 0.1’’ (2.54mm)
K5,K6,K7 = 2-х контактный разъём, шаг 0.1’’ (2.54mm)
JP1 = 2-х контактный джампер, шаг 0.1’’ (2.54mm)
K8 = 3-х контактный винтовой блок, шаг 5mm
RE1,RE2 = реле, 12V/960Ohm, 230VAC/3A, DPDT, TE Connectivity/Axicom type V23105-A5003-A201

Продолжение следует...

Статья подготовлена по материалам журнала «Электор» (Германия)

Удачного творчества!

Главный редактор «РадиоГазеты»

Высококачественный предварительный усилитель NATALY

Принципиальная схема, описание, печатная плата

Данный предварительный усилитель служит для тембровой коррекции и тонкомпенсации при регулировании громкости. Возможно использование для подключения наушников.

Для высококачественного тракта, имеющего в своём составе УМЗЧ с нелинейными и интермодуляционными искажениями порядка 0,001% становятся важны и остальные ступени, которые должны позволять полностью реализовать заложенный потенциал. В настоящее время известны много вариантов реализации высоких параметров, в том числе и на ОУ. Причиной разработки своего варианта предварительного усилителя стали следующие факторы:

При сборке предусилителя на ОУ порог его выходного напряжения, а следовательно - перегрузочная способность – целиком определяются напряжением питания ОУ, и в случае питания от +\-15В не может быть выше этого напряжения.
Результаты субъективных экспертиз предусилителей на ОУ в чистом виде (без выходных повторителей) и с таковыми, например, на основе параллельного усилителя – показывают предпочтение слушателей схеме ОУ+повторитель, при практически идентичных параметрах «с точки зрения Кг», это объясняется сужением спектра искажений ОУ при работе на высокоомную нагрузку и работе его выходного каскада без захода в режим АВ, дающий коммутационные искажения, практически ниже уровня чувствительности приборов (Кг ОУ ОРА134, например – 0,00008%), но хорошо заметных при прослушивании. Именно поэтому, а также по ряду других причин слушатели чётко выделяют предусилитель с выходным каскадом на транзисторах.
Известное схемное решение, содержащее интегральный повторитель на основе параллельного усилителя BUF634 довольно дорогостояще (цена буфера не менее 500 руб), хотя внутренняя схема буфера может быть легко реализована на дискрете – за гораздо более вменяемую сумму.
Усилители, в которых ОУ работает в малосигнальном режиме, показывают высокие характеристики, но по результатам прослушиваний проигрывают. Кроме того, они очень критичны к настройке и требуют как минимум, генератора меандра и широкополосного осциллографа. И всё это при явно худших субъективных результатах.

Недостаток выходного напряжения при схеме ПУ (ОУ + буфер) может быть устранён при реализации в буфере усиления по напряжению, а глубокая местная ООС устраняет искажения. Достаточно высокий начальный ток покоя в выходных транзисторах буфера гарантирует его работу без характерных для двухтактных структур в режиме АВ искажений. Наличие всего двукратного усиления напряжения позволяет добиться повышения перегрузочной способности на 6 дБ, а при трёхкратном – эта цифра становится равной 9 дБ. При работе буфера от источника питания +\-30В размах его выходного напряжения получается 58 вольт от пика до пика. Если же буфер запитать от +\-45В – то выходное напряжение от пика до пика может составить порядка 87В. Такой запас благоприятно отразится при прослушивании виниловых дисков, имеющих характерные особенности в виде щелчков от пыли.
Двухкаскадная реализация предварительного усилителя связана с тем, что темброблок вносит ослабление в сигнал до 10…12 дБ. Конечно, можно компенсировать это путём увеличения усиления второго каскада, но, как показывает практика, на темброблок лучше подавать как можно большее напряжение – это увеличивает отношение сигнал\шум. Кроме того, довольно часто встречаются диски, записанные с большим пик-фактором (громкие пики и довольно низкая средняя громкость). Это не недостаток сведения, скорее, наоборот, потому как звукорежиссёры зачастую злоупотребляют компрессором, пытаясь уместить в диапазон компакт-диска все ступени громкости звука. Но нельзя делать вид, что таких записей не существует. Слушатель при этом добавляет громкость. Таким образом, и второй каскад должен обладать не меньшей перегрузочной способностью, кроме того, он должен обладать малым собственным шумом, высоким входным сопротивлением и способностью без искажений пропускать реальный сигнал после темброблока, в котором крайние частоты звукового диапазона идут с наибольшим подъемом. Дополнительным требованием является линейная АЧХ при отключении темброблока, ровная ПХ при тестировании меандром и субъективная незаметность ПУ в тракте.

В качестве темброблока использован хорошо себя зарекомендовавший темброблок Матюшкина. Он имеет 4хступенчатую регулировку НЧ и плавную регулировку ВЧ, а его АЧХ хорошо соответствует слуховому восприятию, во всяком случае, классический мостовой ТБ, (который тоже может быть применён), слушателями оценивается ниже. Реле позволяет при необходимости отключить всякую частотную коррекцию в тракте, уровень выходного сигнала настраивается подстроечным резистором по равенству усиления на частоте 1000 Гц в режиме с ТБ и при обходе.
Регулятор баланса встроен в ООС второго каскада и особенностей не имеет.
Малое напряжение смещения у ОРА134 (в практике автора на выходе второго каскада не более 1 мВ) позволяет исключить переходные конденсаторы в тракте, оставив лишь один – на входе ПУ, потому как неизвестен уровень постоянного напряжения на выходе источника сигнала. И, хотя на выходе второго каскада на схеме указаны конденсаторы 4,7мкФ+2200 пФ – при уровне смещения нуля около милливольта и менее – их можно смело исключить, закоротив. Это положит конец спорам о влиянии конденсаторов в тракте на звук – наиболее радикальным методом.

Расчётные характеристики:

Кг в диапазоне частот от 20 Гц до 20 кГц - менее 0,001% (типовое значение порядка 0,0005%)
Номинальное входное напряжение, В 0,775
Перегрузочная способность в режиме обхода темброблока - не менее 20 дБ.
Минимальное сопротивление нагрузки, при котором гарантируется работа выходного каскада в режиме А - при максимальном размахе выходного напряжения "от пика до пика" 58В 1,5 кОм.

При использовании предварительного усилителя только с проигрывателями СД допустимо снижение напряжения питания буфера до +\-15В потому как диапазон выходного напряжения таких источников сигнала заведомо ограничен сверху, на параметрах это не отразится.
Налаживание предварительного усилителя следует начинать с проверки режимов по постоянному току выходных транзисторов буферов. По падению напряжения в цепях их эмиттеров устанавливают ток покоя – для первого каскада около 20 мА, для второго – 20..25 мА. При использовании небольших теплоотводов, которые при +\-30В становятся обязательными – можно, ориентируясь по ситуации с температурой - ток покоя увеличить еще немного.
Подбор тока покоя лучше всего выполнять резисторами в эмиттерах первых двух транзисторов буфера. При малом токе-увеличить сопротивления, при большом – уменьшить. Изменять нужно одинаково оба резистора.
При установленном токе покоя далее ставим регуляторы ТБ в положение, соответствующее максимально плоской АЧХ, и, подав на вход сигнал 1000 Гц с номинальным напряжением 0,775В – замеряем напряжение на выходе второго буфера. Затем включаем режим обхода и подстроечным резистором добиваемся той же амплитуды, что и с ТБ.
На завершающей стадии подключаем регулятор стереобаланса, проверяем на отсутствие разных форм неустойчивости (автор с такой проблемой не столкнулся) и проводим прослушивание. Настройка ТБ Матюшкина хорошо освещена в статье автора и здесь не рассматривается.
Для питания предусилителя рекомендуется стабилизированный источник питания, с независимыми обмотками для ПУ и релейной коммутации. Технически требования к питанию ничего нового не представляют. Основное – малый уровень СЧ и ВЧ шумов, с подавлением по питанию которых ситуация у ОУ известна. Про уровень пульсаций - он не должен превышать 0,5 – 1мВ.

Полный комплект плат состоит из двух каналов ПУ, РТ Матюшкина (одна плата на оба канала) и блока питания. Печатные платы разработаны Владимиром Лепёхиным.

Двухсторонняя печатная плата Предварительного усилителя:


УВЕЛИЧИТЬ

Печатная плата для ТБ Матюшкина с релейным переключением:


УВЕЛИЧИТЬ Схема стабильна.Пульсаций напряжения на выходе не заметно, измерения проводил на осциллографе в режиме 0,01дел./вольт(у моего это минимальный предел).


УВЕЛИЧИТЬ

Результаты измерений:

На ОРА134 (только первое звено из двух), питание - одноступенчатое, +\-15В:

Кни(1 кГц).......................... -98дБ (около 0.0003%)
Ким(50Гц+7кГц).................менее -98дБ (около 0,0003%)

На ОРА132 (оба звена), полная версия, питание двухступенчатое:

Кни (1кГц).......................... -100дБ (около 0,00025%)
Ким (19кГц+20кГц)................... -96дБ (около 0,0003%)

В случае самовозбуждения каскадов на ВЧ следует параллельно резисторам R28, R88 и комплементарным им в другом канале запаять слюдяные корректирующие конденсаторы ёмкостью от 100 до 470пФ. Такое было обнаружено при использовании транзисторов ВС546\ВС556 + 2SA1837\2SC4793.

Во вложениях можно скачать все файлы схем и печатных плат в форматах SPlan 6.0 и SL 5.0 соответственно,

– Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале. Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты). А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией. Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний. Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков. А пока достаточно будет умения и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя. В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. – простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см. далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы. Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт. Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден. Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются. То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом. Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают. Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред. случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри. Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г. Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ. Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная). Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм. Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке. К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

Аудиопровода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла. Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается. Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно. Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей. Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком. Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке. Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный». Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

Видео: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к. на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками. Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Все тонкости и нюансы Hi-Fi нужно знать, занимаясь проектированием и постройкой АС, а что касается самодельного Hi-Fi УМЗЧ для дома, то, прежде чем переходить к таким, нужно четко уяснить себе требования к их мощности, необходимой для озвучивания данного помещения, динамическому диапазону (динамике), уровню собственных шумов и КНИ. Добиться от УМЗЧ полосы частот 20-20 000 Гц с завалом на краях по 3 дБ и неравномерностью АЧХ на СЧ в 2 дБ на современной элементной базе не составляет больших сложностей.

Громкость

Мощность УМЗЧ не самоцель, она должна обеспечивать оптимальную громкость воспроизведения звука в данном помещении. Определить ее можно по кривым равной громкости, см. рис. Естественных шумов в жилых помещениях тише 20 дБ не бывает; 20 дБ это лесная глушь в полный штиль. Уровень громкости в 20 дБ относительно порога слышимости это порог внятности – шепот разобрать еще можно, но музыка воспринимается только как факт ее наличия. Опытный музыкант может определить, какой инструмент играет, но что именно – нет.

40 дБ – нормальный шум хорошо изолированной городской квартиры в тихом районе или загородного дома – представляет порог разборчивости. Музыку от порога внятности до порога разборчивости можно слушать при наличии глубокой коррекции АЧХ, прежде всего по басам. Для этого в современные УМЗЧ вводят функцию MUTE (приглушка, мутирование, не мутация!), включающую соотв. корректирующие цепи в УМЗЧ.

90 дБ – уровень громкости симфонического оркестра в очень хорошем концертном зале. 110 дБ может выдать оркестр расширенного состава в зале с уникальной акустикой, каких в мире не более 10, это порог восприятия: звуки громче воспринимаются еще как различимый по смыслу с усилием воли, но уже раздражающий шум. Зона громкости в жилых помещениях 20-110 дБ составляет зону полной слышимости, а 40-90 дБ – зону наилучшей слышимости, в которой неподготовленные и неискушенные слушатели вполне воспринимают смысл звука. Если, конечно, он в нем есть.

Мощность

Расчет мощности аппаратуры по заданной громкости в зоне прослушивания едва ли не основная и самая трудная задача электроакустики. Для себя в условиях лучше идти от акустических систем (АС): рассчитать их мощность по упрощенной методике, и принять номинальную (долговременную) мощность УМЗЧ равной пиковой (музыкальной) АС. В таком случае УМЗЧ не добавит заметно своих искажений к таковым АС, они и так основной источник нелинейности в звуковом тракте. Но и делать УМЗЧ слишком мощным не следует: в таком случае уровень его собственных шумов может оказаться выше порога слышимости, т.к. считается он от уровня напряжения выходного сигнала на максимальной мощности. Если считать совсем уж просто, то для комнаты обычной квартиры или дома и АС с нормальной характеристической чувствительностью (звуковой отдачей) можно принять след. значения оптимальной мощности УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м – 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м – 100-150 Вт.
  • 100-120 кв. м – 150-200 Вт.
  • Более 120 кв. м – определяется расчетом по данным акустических измерений на месте.

Динамика

Динамический диапазон УМЗЧ определяется по кривым равной громкости и пороговым значениям для разных степеней восприятия:

  1. Симфоническая музыка и джаз с симфоническим сопровождением – 90 дБ (110 дБ – 20 дБ) идеал, 70 дБ (90 дБ – 20 дБ) приемлемо. Звук с динамикой 80-85 дБ в городской квартире не отличит от идеального никакой эксперт.
  2. Прочие серьезные музыкальные жанры – 75 дБ отлично, 80 дБ «выше крыши».
  3. Попса любого рода и саундтреки к фильмам – 66 дБ за глаза хватит, т.к. данные опусы уже при записи сжимаются по уровням до 66 дБ и даже до 40 дБ, чтобы можно было слушать на чем угодно.

Динамический диапазон УМЗЧ, правильно выбранного для данного помещения, считают равным его уровню собственных шумов, взятому со знаком +, это т. наз. отношение сигнал/шум.

КНИ

Нелинейные искажения (НИ) УМЗЧ это составляющие спектра выходного сигнала, которых не было во входном. Теоретически НИ лучше всего «затолкать» под уровень собственных шумов, но технически это очень трудно реализуемо. На практике берут в расчет т. наз. эффект маскировки: на уровнях громкости ниже прим. 30 дБ диапазон воспринимаемых человеческим ухом частот сужается, как и способность различать звуки по частоте. Музыканты слышат ноты, но оценить тембр звука затрудняются. У людей без музыкального слуха эффект маскировки наблюдается уже на 45-40 дБ громкости. Поэтому УМЗЧ с КНИ 0,1% (–60 дБ от уровня громкости в 110 дБ) оценит как Hi-Fi рядовой слушатель, а с КНИ 0,01% (–80 дБ) можно считать не искажающим звук.

Лампы

Последнее утверждение, возможно, вызовет неприятие, вплоть до яростного, у адептов ламповой схемотехники: мол, настоящий звук дают только лампы, причем не просто какие-то, а отдельные типы октальных. Успокойтесь, господа – особенный ламповый звук не фикция. Причина – принципиально различные спектры искажений у электронных ламп и транзисторов. Которые, в свою очередь, обусловлены тем, что в лампе поток электронов движется в вакууме и квантовые эффекты в ней не проявляются. Транзистор же прибор квантовый, там неосновные носители заряда (электроны и дырки) движутся в кристалле, что без квантовых эффектов вообще невозможно. Поэтому спектр ламповых искажений короткий и чистый: в нем четко прослеживаются только гармоники до 3-й – 4-й, а комбинационных составляющих (сумм и разностей частот входного сигнала и их гармоник) очень мало. Поэтому во времена вакуумной схемотехники КНИ называли коэффициентом гармоник (КГ). У транзисторов же спектр искажений (если они измеримы, оговорка случайная, см. ниже) прослеживается вплоть до 15-й и более высоких компонент, и комбинационных частот в нем хоть отбавляй.

На первых порах твердотельной электроники конструкторы транзисторных УМЗЧ брали для них привычный «ламповый» КНИ в 1-2%; звук с ламповым спектром искажений такой величины рядовыми слушателями воспринимается как чистый. Между прочим, и самого понятия Hi-Fiтогда еще не было. Оказалось – звучат тускло и глухо. В процессе развития транзисторной техники и выработалось понимание, что такое Hi-Fi и что для него нужно.

В настоящее время болезни роста транзисторной техники успешно преодолены и побочные частоты на выходе хорошего УМЗЧ с трудом улавливаются специальными методами измерений. А ламповую схемотехнику можно считать перешедшей в разряд искусства. Его основа может быть любой, почему же электронике туда нельзя? Тут уместна будет аналогия с фотографией. Никто не сможет отрицать, что современная цифрозеркалка дает картинку неизмеримо более четкую, подробную, глубокую по диапазону яркостей и цвета, чем фанерный ящичек с гармошкой. Но кто-то крутейшим Никоном «клацает фотки» типа «это мой жирный кошак нажрался как гад и дрыхнет раскинув лапы», а кто-то Сменой-8М на свемовскую ч/б пленку делает снимок, перед которым на престижной выставке толпится народ.

Примечание: и еще раз успокойтесь – не все так плохо. На сегодня у ламповых УМЗЧ малой мощности осталось по крайней мере одно применение, и не последней важности, для которого они технически необходимы.

Опытный стенд

Многие любители аудио, едва научившись паять, тут же «уходят в лампы». Это ни в коем случае не заслуживает порицания, наоборот. Интерес к истокам всегда оправдан и полезен, а электроника стала таковой на лампах. Первые ЭВМ были ламповыми, и бортовая электронная аппаратура первых космических аппаратов была тоже ламповой: транзисторы тогда уже были, но не выдерживали внеземной радиации. Между прочим, тогда под строжайшим секретом создавались и ламповые… микросхемы! На микролампах с холодным катодом. Единственное известное упоминание о них в открытых источниках есть в редкой книге Митрофанова и Пикерсгиля «Современные приемно-усилительные лампы».

Но хватит лирики, к делу. Для любителей повозиться с лампами на рис. – схема стендового лампового УМЗЧ, предназначенного именно для экспериментов: SA1 переключается режим работы выходной лампы, а SA2 – напряжение питания. Схема хорошо известна в РФ, небольшая доработка коснулась только выходного трансформатора: теперь можно не только «гонять» в разных режимах родную 6П7С, но и подбирать для других ламп коэффициент включения экранной сетки в ульралинейном режиме; для подавляющего большинства выходных пентодов и лучевых тетродов он или 0,22-0,25, или 0,42-0,45. Об изготовлении выходного трансформатора см. ниже.

Гитаристам и рокерам

Это тот самый случай, когда без ламп не обойтись. Как известно, электрогитара стала полноценным солирующим инструментом после того, как предварительно усиленный сигнал со звукоснимателя стали пропускать через специальную приставку – фьюзер – преднамеренно искажающую его спектр. Без этого звук струны был слишком резким и коротким, т.к. электромагнитный звукосниматель реагирует только на моды ее механических колебаний в плоскости деки инструмента.

Вскоре выявилось неприятное обстоятельство: звучание электрогитары с фьюзером обретает полную силу и яркость только на больших громкостях. Особенно это проявляется для гитар со звукоснимателем типа хамбакер, дающим самый «злой» звук. А как быть начинающему, вынужденному репетировать дома? Не идти же в зал выступать, не зная точно, как там зазвучит инструмент. И просто любителям рока хочется слушать любимые вещи в полном соку, а рокеры народ в общем-то приличный и неконфликтный. По крайней мере те, кого интересует именно рок-музыка, а не антураж с эпатажем.

Так вот, оказалось, что роковый звук появляется на уровнях громкости, приемлемых для жилых помещений, если УМЗЧ ламповый. Причина – специфическое взаимодействие спектра сигнала с фьюзера с чистым и коротким спектром ламповых гармоник. Тут снова уместна аналогия: ч/б фото может быть намного выразительнее цветного, т.к. оставляет для просмотра только контур и свет.

Тем, кому ламповый усилитель нужен не для экспериментов, а в силу технической необходимости, долго осваивать тонкости ламповой электроники недосуг, они другим увлечены. УМЗЧ в таком случае лучше делать бестрансформаторный. Точнее – с однотактным согласующим выходным трансформатором, работающим без постоянного подмагничивания. Такой подход намного упрощает и ускоряет изготовление самого сложного и ответственного узла лампового УМЗЧ.

“Бестрансформаторный” ламповый выходной каскад УМЗЧ и предварительные усилители к нему

Справа на рис. дана схема бестрансформаторного выходного каскада лампового УМЗЧ, а слева – варианты предварительного усилителя для него. Вверху – с регулятором тембра по классической схеме Баксандала, обеспечивающей достаточно глубокую регулировку, но вносящей небольшие фазовые искажения в сигнал, что может быть существенно при работе УМЗЧ на 2-полосную АС. Внизу – предусилитель с регулировкой тембра попроще, не искажающей сигнал.

Но вернемся к «оконечнику». В ряде зарубежных источников данная схема считается откровением, однако идентичная ей, за исключением емкости электролитических конденсаторов, обнаруживается в советском «Справочнике радиолюбителя» 1966 г. Толстенная книжища на 1060 страниц. Не было тогда интернета и баз данных на дисках.

Там же, справа на рис., коротко, но ясно описаны недостатки этой схемы. Усовершенствованная, из того же источника, дана на след. рис. справа. В ней экранная сетка Л2 запитана от средней точки анодного выпрямителя (анодная обмотка силового трансформатора симметричная), а экранная сетка Л1 через нагрузку. Если вместо высокоомных динамиков включить согласующий трансформатор с обычным динамиков, как в пред. схеме, выходная мощность составить ок. 12 Вт, т.к. активное сопротивление первичной обмотки трансформатора много меньше 800 Ом. КНИ этого оконечного каскада с трансформаторным выходом – прим. 0,5%

Как сделать трансформатор?

Главные враги качества мощного сигнального НЧ (звукового) трансформатора – магнитное поле рассеяния, силовые линии которого замыкаются, обходя магнитопровод (сердечник), вихревые токи в магнитопроводе (токи Фуко) и, в меньшей степени – магнитострикция в сердечнике. Из-за этого явления небрежно собранный трансформатор «поет», гудит или пищит. С токами Фуко борются, уменьшая толщину пластин магнитопровода и дополнительно изолируя их лаком при сборке. Для выходных трансформаторов оптимальная толщина пластин – 0,15 мм, максимально допустимая – 0,25 мм. Брать для выходного трансформатора пластины тоньше не следует: коэффициент заполнения керна (центрального стержня магнитопровода) сталью упадет, сечение магнитопровода для получения заданной мощности придется увеличить, отчего искажения и потери в нем только возрастут.

В сердечнике звукового трансформатора, работающего с постоянным подмагничиванием (напр., анодным током однотактного выходного каскада) должен быть небольшой (определяется расчетом) немагнитный зазор. Наличие немагнитного зазора, с одной стороны, уменьшает искажения сигнала от постоянного подмагничивания; с другой – в магнитопроводе обычного типа увеличивает поле рассеяния и требует сердечника большего сечения. Поэтому немагнитный зазор нужно рассчитывать на оптимум и выполнять как можно точнее.

Для трансформаторов, работающих с подмагничиванием, оптимальный тип сердечника – из пластин Шп (просеченных), поз. 1 на рис. В них немагнитный зазор образуется при просечке керна и потому стабилен; его величина указывается в паспорте на пластины или замеряется набором щупов. Поле рассеяния минимально, т.к. боковые ветви, через которые замыкается магнитный поток, цельные. Из пластин Шп часто собирают и сердечники трансформаторов без подмагничивания, т.к. пластины Шп делают из высококачественной трансформаторной стали. В таком случае сердечник собирают вперекрышку (пластины кладут просечкой то в одну, то в другую сторону), а его сечение увеличивают на 10% против расчетного.

Трансформаторы без подмагничивания лучше мотать на сердечниках УШ (уменьшенной высоты с уширенными окнами), поз. 2. В них уменьшение поля рассеяния достигается за счет уменьшения длины магнитного пути. Поскольку пластины УШ доступнее Шп, из них часто набирают и сердечники трансформаторов с подмагничиванием. Тогда сборку сердечника ведут внакрой: собирают пакет из Ш-пластин, кладут полоску непроводящего немагнитного материала толщиной в величину немагнитного зазора, накрывают ярмом из пакета перемычек и стягивают все вместе обоймой.

Примечание: «звуковые» сигнальные магнитопроводы типа ШЛМ для выходных трансформаторов высококачественных ламповых усилителей мало пригодны, у них большое поле рассеяния.

На поз. 3 дана схема размеров сердечника для расчета трансформатора, на поз. 4 конструкция каркаса обмоток, а на поз. 5 – выкройки его деталей. Что до трансформатора для «бестрансформаторного» выходного каскада, то его лучше делать на ШЛМме вперекрышку, т.к. подмагничивание ничтожно мало (ток подмагничивания равен току экранной сетки). Главная задача тут – сделать обмотки как можно компактнее с целью уменьшения поля рассеяния; их активное сопротивление все равно получится много меньше 800 Ом. Чем больше свободного места останется в окнах, тем лучше получился трансформатор. Поэтому обмотки мотают виток к витку (если нет намоточного станка, это маета ужасная) из как можно более тонкого провода, коэффициент укладки анодной обмотки для механического расчета трансформатора берут 0,6. Обмоточный провод – марок ПЭТВ или ПЭММ, у них жила бескислородная. ПЭТВ-2 или ПЭММ-2 брать не надо, у них от двойной лакировки увеличенный наружный диаметр и поле рассеяния будет больше. Первичную обмотку мотают первой, т.к. именно ее поле рассеяния больше всего влияет на звук.

Железо для этого трансформатора нужно искать с отверстиями в углах пластин и стяжными скобами (см. рис. справа), т.к. «для полного счастья» сборка магнитопровода производится в след. порядке (разумеется, обмотки с выводами и наружной изоляцией должны быть уже на каркасе):

  1. Готовят разбавленный вдвое акриловый лак или, по старинке, шеллак;
  2. Пластины с перемычками быстро покрывают лаком с одной стороны и как можно быстрее, не придавливая сильно, вкладывают в каркас. Первую пластину кладут лакированной стороной внутрь, следующую – нелакированной стороной к лакированной первой и т.д;
  3. Когда окно каркаса заполнится, накладывают скобы и туго стягивают болтами;
  4. Через 1-3 мин, когда выдавливание лака из зазоров видимо прекратится, добавляют пластин снова до заполнения окна;
  5. Повторяют пп. 2-4, пока окно не будет туго набито сталью;
  6. Снова туго стягивают сердечник и сушат на батарее и т.п. 3-5 суток.

Собранный по такой технологии сердечник имеет очень хорошие изоляцию пластин и заполнение сталью. Потерь на магнитострикцию вообще не обнаруживается. Но учтите – для сердечников их пермаллоя данная методика неприменима, т.к. от сильных механических воздействий магнитные свойства пермаллоя необратимо ухудшаются!

На микросхемах

УМЗЧ на интегральных микросхемах (ИМС) делают чаще всего те, кого устраивает качество звука до среднего Hi-Fi, но более привлекает дешевизна, быстрота, простота сборки и полное отсутствие каких-либо наладочных процедур, требующих специальных знаний. Попросту, усилитель на микросхемах – оптимальный вариант для «чайников». Классика жанра здесь – УМЗЧ на ИМС TDA2004, стоящей на серии, дай бог памяти, уже лет 20, слева на рис. Мощность – до 12 Вт на канал, напряжение питания – 3-18 В однополярное. Площадь радиатора – от 200 кв. см. для максимальной мощности. Достоинство – способность работать на очень низкоомную, до 1,6 Ом, нагрузку, что позволяет снимать полную мощность при питании от бортовой сети 12 В, а 7-8 Вт – при 6-вольтовом питании, напр., на мотоцикле. Однако выход TDA2004 в классе В некомплементарный (на транзисторах одинаковой проводимости), поэтому звучок точно не Hi-Fi: КНИ 1%, динамика 45 дБ.

Более современная TDA7261 звук дает не лучше, но мощнее, до 25 Вт, т.к. верхний предел напряжения питания увеличен до 25 В. Нижний, 4,5 В, все еще позволяет запитываться от 6 В бортсети, т.е. TDA7261 можно запускать практически от всех бортсетей, кроме самолетной 27 В. С помощью навесных компонент (обвязки, справа на рис.) TDA7261 может работать в режиме мутирования и с функцией St-By (Stand By, ждать), переводящей УМЗЧ в режим минимального энергопотребления при отсутствии входного сигнала в течение определенного времени. Удобства стоят денег, поэтому для стерео нужна будет пара TDA7261 с радиаторами от 250 кв. см. для каждой.

Примечание: если вас чем-то привлекают усилители с функцией St-By, учтите – ждать от них динамики шире 66 дБ не стоит.

«Сверхэкономична» по питанию TDA7482, слева на рис., работающая в т. наз. классе D. Такие УМЗЧ иногда называют цифровыми усилителями, что неверно. Для настоящей оцифровки с аналогового сигнала снимают отсчеты уровня с частотой квантования, не мене чем вдвое большей наивысшей из воспроизводимых частот, величина каждого отсчета записывается помехоустойчивым кодом и сохраняется для дальнейшего использования. УМЗЧ класса D – импульсные. В них аналог непосредственно преобразуется в последовательность широтно-модулированных импульсов (ШИМ) высокой частоты, которая и подается на динамик через фильтр низких частот (ФНЧ).

Звук класса D с Hi-Fi не имеет ничего общего: КНИ в 2% и динамика в 55 дБ для УМЗЧ класса D считаются очень хорошими показателями. И TDA7482 здесь, надо сказать, выбор не оптимальный: другие фирмы, специализирующиеся на классе D, выпускают ИМС УМЗЧ дешевле и требующие меньшей обвязки, напр., D-УМЗЧ серии Paxx, справа на рис.

Из TDAшек следует отметить 4-канальную TDA7385, см. рис., на которой можно собрать хороший усилитель для колонок до среднего Hi-Fi включительно, с разделением частот на 2 полосы или для системы с сабвуфером. Расфильтровка НЧ и СЧ-ВЧ в том и другом случае делается по входу на слабом сигнале, что упрощает конструкцию фильтров и позволяет глубже разделить полосы. А если акустика сабвуферная, то 2 канала TDA7385 можно выделить под суб-УНЧ мостовой схемы (см. ниже), а остальные 2 задействовать для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, что можно перевести как «подбасовик» или, дословно, «подгавкиватель» воспроизводит частоты до 150-200 Гц, в этом диапазоне человеческие уши практически не способны определить направление на источник звука. В АС с сабвуфером «подбасовый» динамик ставят в отельное акустическое оформление, это и есть сабвуфер как таковой. Сабвуфер размещают, в принципе, как удобнее, а стереоэффект обеспечивается отдельными СЧ-ВЧ каналами со своими малогабаритными АС, к акустическому оформлению которых особо серьезных требований не предъявляется. Знатоки сходятся на том, что стерео лучше все же слушать с полным разделением каналов, но сабвуферные системы существенно экономят средства или труд на басовый тракт и облегчают размещение акустики в малогабаритных помещениях, почему и пользуются популярностью у потребителей с обычным слухом и не особо взыскательных.

«Просачивание» СЧ-ВЧ в сабвуфер, а из него в воздух, сильно портит стерео, но, если резко «обрубить» подбасы, что, кстати, очень сложно и дорого, то возникнет очень неприятный на слух эффект перескока звука. Поэтому расфильтровка каналов в сабвуферных системах производится дважды. На входе электрическими фильтрами выделяются СЧ-ВЧ с басовыми «хвостиками», не перегружающими СЧ-ВЧ тракт, но обеспечивающими плавный переход на подбас. Басы с СЧ «хвостиками» объединяются и подаются на отдельный УМЗЧ для сабвуфера. Дофильтровываются СЧ, чтобы не портилось стерео, в сабвуфере уже акустически: подбасовый динамик, ставят, напр., в перегородку между резонаторными камерами сабвуфера, не выпускающими СЧ наружу, см. справа на рис.

К УМЗЧ для сабвуфера предъявляется ряд специфических требований, из которых «чайники» главным считают возможно большую мощность. Это совершенно неправильно, если, скажем, расчет акустики под комнату дал для одной колонки пиковую мощность W, то мощность сабвуфера нужна 0,8(2W) или 1,6W. Напр., если для комнаты подходят АС S-30, то сабвуфер нужен 1,6х30=48 Вт.

Гораздо важнее обеспечить отсутствие фазовых и переходных искажений: пойдут они – перескок звука обязательно будет. Что касается КНИ, то он допустим до 1% Собственные искажения басов такого уровня не слышны (см. кривые равной громкости), а «хвосты» их спектра в лучше всего слышимой СЧ области не выберутся из сабвуфера наружу.

Во избежание фазовых и переходных искажений усилитель для сабвуфера строят по т. наз. мостовой схеме: выходы 2-х идентичных УМЗЧ включают встречно через динамик; сигналы на входы подаются в противофазе. Отсутствие фазовых и переходных искажений в мостовой схеме обусловлено полной электрической симметрией путей выходного сигнала. Идентичность усилителей, образующих плечи моста, обеспечивается применением спаренных УМЗЧ на ИМС, выполненных на одном кристалле; это, пожалуй, единственный случай, когда усилитель на микросхемах лучше дискретного.

Примечание: мощность мостового УМЗЧ не удваивается, как думают некоторые, она определяется напряжением питания.

Пример схемы мостового УМЗЧ для сабвуфера в комнату до 20 кв. м (без входных фильтров) на ИМС TDA2030 дан на рис. слева. Дополнительная отфильтровка СЧ осуществляется цепями R5C3 и R’5C’3. Площадь радиатора TDA2030 – от 400 кв. см. У мостовых УМЗЧ с открытым выходом есть неприятная особенность: при разбалансе моста в токе нагрузки появляется постоянная составляющая, способная вывести из строя динамик, а схемы защиты на подбасах часто глючат, отключая динамик, когда не надо. Поэтому лучше защитить дорогую НЧ головку «дубово», неполярными батареями электролитических конденсаторов (выделено цветом, а схема одной батареи дана на врезке.

Немного об акустике

Акустическое оформление сабвуфера – особая тема, но раз уж здесь дан чертеж, то нужны и пояснения. Материал корпуса – МДФ 24 мм. Трубы резонаторов – из достаточно прочного не звенящего пластика, напр., полиэтилена. Внутренний диаметр труб – 60 мм, выступы внутрь 113 мм в большой камере и 61 в малой. Под конкретную головку громкоговорителя сабвуфер придется перенастроить по наилучшему басу и, одновременно, по наименьшему влиянию на стереоэффект. Для настройки трубы берут заведомо большей длины и, задвигая-выдвигая, добиваются требуемого звучания. Выступы труб наружу на звук не влияют, их потом отрезают. Настройка труб взаимозависима, так что повозиться придется.

Усилитель для наушников

Усилитель для наушников делают своими руками чаще всего по 2-м причинам. Первая – для слушания «на ходу», т.е. вне дома, когда мощности аудиовыхода плеера или смартфона не хватает для раскачки «пуговок» или «лопухов». Вторая – для высококлассных домашних наушников. Hi-Fi УМЗЧ для обычной жилой комнаты нужен с динамикой до 70-75 дБ, но динамический диапазон лучших современных стереонаушников превышает 100 дБ. Усилитель с такой динамикой стоит дороже некоторых автомобилей, а его мощность будет от 200 Вт в канале, что для обычной квартиры слишком много: прослушивание на сильно заниженной против номинальной мощности портит звук, см. выше. Поэтому имеет смысл сделать маломощный, но с хорошей динамикой отдельный усилитель именно для наушников: цены на бытовые УМЗЧ с таким довеском завышены явно несуразно.

Схема простейшего усилителя для наушников на транзисторах дана на поз. 1 рис. Звук – разве что для китайских «пуговок», работает в классе B. Экономичностью тоже не отличается – 13-мм литиевых батареек хватает на 3-4 часа при полной громкости. На поз. 2 – TDAшная классика для наушников «на ход». Звук, впрочем, дает вполне приличный, до среднего Hi-Fi смотря по параметрам оцифровки трека. Любительским усовершенствованиям обвязки TDA7050 несть числа, но перехода звука на следующий уровень классности пока не добился никто: сама «микруха» не позволяет. TDA7057 (поз. 3) просто функциональнее, можно подключать регулятор громкости на обычном, не сдвоенном, потенциометре.

УМЗЧ для наушников на TDA7350 (поз. 4) рассчитан уже на раскачку хорошей индивидуальной акустики. Именно на этой ИМС собраны усилители для наушников в большинстве бытовых УМЗЧ среднего и высокого класса. УМЗЧ для наушников на KA2206B (поз. 5) считается уже профессиональным: его максимальной мощности в 2,3 Вт хватает и для раскачки таких серьезных изодинамических «лопухов», как ТДС-7 и ТДС-15.

СХЕМА ВЫСОКОКАЧЕСТВЕННОГО ПРЕДВАРИТЕЛЬНОГО УСИЛИТЕЛЯ

На рубеже 2004 и 2005 годов возникает естественное желание строить усилители на современной элементной базе, пользуясь передовыми достижениями мировой электронной технологии.
Предлагаю вашему вниманию высококачественный предусилитель на базе EL2125.
Основные материалы БЕСПЛАТНЫ, самодельщики могут свободно использовать их для повторения в своих собственных конструкциях.
ПОЧЕМУ EL2125 ?
Превосходный чип, по своим характеристикам предендует едва ли не на 2 место в десятке лучших ОУ по обзорам моделей в 2004г.
Это конечно, не AD8099 (первое место в мире, премия от Intel "Инновация 2004 года"), но EL2125 уже появился в продаже на рынке СНГ и достать его вполне реально, особенно тем, кто живет в столичных и крупных городах.
НАСКОЛЬКО ХОРОШИ ХАРАКТЕРИСТИКИ EL2125, СУДИТЕ САМИ:

Возможность работы на нагрузку до - 500 Ом
Рабочий дипазон частот до - 180 MHz
Напряжение питания - ±4.5 ... ±16.5 В.
Коэффициент нелинейных искажений - менее 0,001%
Скорость нарастания выходного сигнала - 190 V/µs
Уровень шума - 0, 86 nV/vHz (лучше, чем у AD8099 ! ! !)

Цена EL2125 в розничной продаже обычно $ 3 за штуку, не очень дешево, но оно того стоит.
Чаще всего, EL2125 встречается в корпусе типа SO - 8 (готовьте микронасадки к паяльникам).
Должен заметить, что в список характеристик я бы добавил и такой как - " удивительная музыкальность". Этот показатель невозможно измерить приборами и выразить цифрами, он ощущается только на слух.

1. Как усилитель для телефонов с широким диапазоном сопротивлений:

2. Как высококачественный предусилитель для оконечных усилителей с двухполярным питанием (в диапазоне от ± 22 до ± 35 В.) и чувствительностью 20 ... 26 дБ:

Данный ОУ невольно напрашивается в более серьезный предварительный усилитель, созданный на базе усилителя Солнцева и описанного на сайте "Паяльник":
В усилителе применены сдвоенные переменные резисторы R11 и R17 любого типа группы Б, R1 и R21 любого типа группы В или А. В качестве тонокомпенсированного регулятора громкости (R21) можно примененить переменный резистор 100 кОм (с отводом от середины). Транзисторы можно заменить на КТ3107И, КТ313Б, КТ361В,К (VT1, VT4) и КТ312В, КТ315В (остальные). Замена ОУ К574УД1 на ОУ других типов не рекомендуется. При значительном уровне постоянной составляющей (в редких случаях) в точке А необходимо установить конденсатор емкостью 2.2 - 5 мкф.

Описываемый предварительный усилитель подключается к усилителю мощности ЗЧ с входным сопротивлением не менее 10 кОм. Со значительным увеличением Кг, данный ПУ можно нагрузить и на УМЗЧ с Rвх до 2 кОм (что крайне нежелательно), в таких случаях (если Rвх вашего УМЗЧ менее 10 кОм) нужно просто еще раз умощнить выходной каскад (копию участка схемы VT1-VT2-VT3-VT4-R4-R5-R6-R7, подключить на выход DA2), резисторы R23 и R24 подключить аналогично резисторам R2 и R3, хотя в этом случае возможно повысится уровень шумов. А если Rвх вашего УМЗЧ больше или равно 100 кОм, то в качестве операционного усилителя DA2 рекомендуется применить К574УД1А(Б), это снизит уровень искажений и шумов.

Возможные изменения в схеме (улучшающие):
- Для исключения из тракта прохождения звукового сигнала переключателей П2К (весьма ненадежных в работе) рекомендуется переключатель SA1 исключить из схемы (вместе с резисторами R8, R9), а переключатель SA2 перенести на последий каскад замыкая накоротко резистор R23 (резисторы R13, R14 при этом исключаются из схемы).

Схема предусилителя:

Так же будет не бесполезным использовать данный ОУ в универсальном предварительном усилителе, способным так же выполнять функцию усилителя для наушников. Принципиальная схемы приведена ниже:

Эмиттерные повторители VT1-VT2 разгружают выход ОУ, а дальше следует схема с местной обратной связью, способствующая дополнительному снижению не линейных искажений. Резисторами R19 и R20 устанавливается ток покоя окнечного каскада предварительного усилителя, аналогично усилителям мощности, в пределах 7-12 мА. В связи с этим последний каскад необходимо установить на небольшой теплоотвод

Страница подготовлена по материалам сайта http://yooree.narod.ru и http://cxem.net

Схем предусилителей существует множество, а при условии соблюдения несколько простых мер предосторожности и использовании современных операционных усилителей они очень просты в разработке и обеспечивают высокую производительность. Обращаюсь к тем, для кого ОУ "под запретом": Пожалуйста, пропустите этот раздел, но ТОЛЬКО после прочтения следующих двух абзацев.

Несмотря на то, что в аудиофильских кругах операционные усилители считаются чем-то плохим, необходимо помнить о том, что звук от инструмента музыканта до ушей слушателя проходит через где-то от 10 до 100 операционных усилителей – в микшере (как правило, более одного раза), во внешних устройствах эффектов, в устройстве записи (аналоговом или цифровом), и, наконец, в самом проигрывателе компакт-дисков. Многие из них не так хороши, как те, которые используются в этой конструкции.

Это не означает, что хороший ламповый предусилитель не будет звучать лучше (или, возможно, просто по-другому), но не стоит также верить мифам о плохом «микросхемном звуке", которые весьма популярны. Это мнение тех, кто использовал и ламповые предусилители, и предусилители на ОУ моей конструкции.

Описание

Предусилитель имеет опциональные регуляторы тембра и баланса, которые могут не включаться при желании. Селектор входов может быть расширен, если это необходимо, чтобы обеспечить больше источников сигнала.

Регулятор тембра построен на пассивных элементах управления, но не включает традиционную схему с обратной связью Баксандала. Он обеспечивает регулировку в пределах ±6 дБ на максимуме, что может показаться недостаточным (большинство регуляторов тембра предлагают от 12 до 20 дБ), но в действительности, этого, как правило, вполне достаточно для тех корректировок, какие обычно необходимы.

Примечание: Регулятор тембра был немного изменен с момента оригинальной публикации этой схемы. В регуляторе ВЧ в идеале должен использоваться конденсатор 1 нФ (10 нФ был использован ранее). В приведенной схеме обеспечивается регулировка ±3 дБ на частотах 6 кГц и 55 Гц в крайних положениях потенциометров. Если изменение тембра слишком незначительно, увеличение емкости конденсаторов в цепях регулировки низких и высоких частот (100 нФ и 1 нФ соответственно) понизит частоту, и наоборот. В случае использования небольших акустических систем в цепи регулятора низких частот лучше использовать конденсатор 47 нФ.

В схеме предусмотрен опциональный выход на запись. Его можно исключить, если он не нужен. Излишне говорить, что может быть использовано любое устройство записи, и оно не обязательно должно быть магнитофоном.

Рис. 1. Селектор входов и коммутация цепей

Каких-либо особенностей в конструкции здесь нет, но при монтаже следует соблюдать осторожность, чтобы гарантировать, что провода левого и правого каналов разделены везде, где это возможно, чтобы предотвратить перекрестные помехи. В качестве селектора входов рекомендуется использовать поворотный переключатель с удлиненным валом. Это позволит разместить все входы и переключатель в пределах одной секции и надежно их экранировать.

Регуляторы входного сигнала для CD и DVD входов позволяют сбалансировать уровни с другими источниками. Проведя небольшое количество экспериментов необходимо обеспечить возможность переключаться с одного входа на другой с сохранением уровня громкости.


Рис. 2. Входной буфер и регулировка тембра

На схеме показан только левый канал. Правый канал идентичен, и использует вторую половину ОУ NE5532. Обратите внимание, как подключается питание к ОУ:


+V - Pin 8, –V - Pin 4
При неправильном подключении операционные усилители выйдут из строя!

Входной каскад имеет коэффициент усиления 2 (6 дБ) и выполняет роль буфера для темброблока. Буферный каскад на выходе темброблока также имеет 2-хкратное усиление, чтобы компенсировать потери на стадии регулировки тембра (6 дБ). Таким образом, общее усиление после регуляторов тембра составляет 4 (для тех частот, которые усилены до максимума). С учетом стандартного сигнала 2 В RMS с проигрывателя компакт-дисков, выход составит 8 В RMS или пик амплитуды 11,3 В (при условии, что регулятор уровня входного сигнала на максимуме).

Чтобы предотвратить срез сигнала на пиках, напряжения питания ОУ должно быть не ниже ± 15 В. Уровень сигнала других источников будет значительно ниже 2 В RMS проигрывателя компакт-дисков. Поэтому исключается все вероятные возможности клиппинга.

Обратите внимание, что регуляторы тембра в центральном положении обеспечивают практически ровную АЧХ. Любое отклонение будет вызвано, скорее всего, механическими, а не электрическими причинами.

При переключении S2 все элементы темброблока и выходной буфер исключаются из цепи.


Рис. 3. Баланс, громкость, выходной каскад усиления

Выходной каскад обеспечивает основную часть усиления (12,6 дБ), и включает в себя регуляторы громкости и баланса. Регулятор баланса вносит ослабление 2,3 дБ в центральном положении и имеет полулогарифмическую характеристику. Поэтому в районе центрального положения движка легко обеспечивается точный контроль. Когда элемент управления поворачивается в крайнее положение, противоположный канал получает 1 дБ сигнала. Использование ступенчатой ​​регулировки усиления может снизить уровень шума

Если ваш усилитель имеет необычно высокую чувствительность, необходимо увеличить значение R19. Усиление этого каскада определяется по формуле:

Ку = 20log((R18 + R17) / R17) - 2,3 дБ (2,3 дБ теряется в управлении балансом)

Общий коэффициент усиления системы со всеми элементами управления (кроме регуляторов тембра) на максимуме составляет 18,5 дБ, поэтому 230 мВ будет выводить усилитель с чувствительностью входа 2 В на полную мощность.

Если требуется большее усиление (что весьма маловероятно), то это может быть реализовано за счет снижения номинала R17 в оконечном выходном каскаде (в настоящее время 22 кОм). Если, например, нужен общий коэффициент усиления 24 дБ, то значение R17 должно быть уменьшено до 12 кОм. При этом собственный шум повышается пропорционально увеличению коэффициента усиления.

Для работы с усилителями мощности обычной чувствительности (с усилением 27 дБ) общий коэффициент усиления предусилителя в 10 дБ достаточен для большинства источников. Это значение может быть достигнуто путем увеличения R17 до 82 кОм, так что общее усиление будет

6 дБ + 7 дБ – 2,3 дБ = 10,7 дБ

По желанию значения R17 и R18 могут быть разделены на 10 (до 10 кОм и 2,2 кОм, как показано на схеме). Это может уменьшить шум за счет более низких импедансов. Я не измерял уровни шума в обеих конфигурациях, но они будут очень низкими в любом случае.

Все потенциометры использованы с линейной характеристикой.

Каждый ОУ должен быть зашунтирован электролитическими конденсаторами 10 мкФ х 25 В от каждого плеча питания на землю и конденсаторами емкостью 100 нФ между выводами питания (см. рис. 4). Последние должны располагаться как можно ближе к выводам питания ОУ, расположение электролитов 10 мкФ не критично. Отказ от шунтирования приведет к возникновению высокочастотных колебаний, которые значительно исказят звучание предусилителя.


Рис. 4. Схема шунтирования ОУ по питанию

Указанные ОУ весьма распространены, и их не составит труда найти. Несомненно, есть и лучшие устройства, но общее качество NE5532, используемых в этой конструкции, должно удовлетворить самых взыскательных слушателей. Эти устройства имеют внутренний стабилизатор, и не требуется никакой внешней стабилизации.

Обратите внимание, что все операционные усилители (за исключением буфера тона) работают с усилением по постоянному току. Это приводит к появлению на выходах ОУ постоянного напряжения в пределах нескольких милливольт. Для устранения этого потребовалось бы использование электролитических конденсаторов на пути прохождения сигнала, чего хотелось избежать.

Использование выходного конденсатора емкостью 2,2 мкФ предотвратить попадание постоянного напряжения в последующие устройства. Категорически не рекомендуется удалять эти конденсаторы, т.к. постоянное напряжение (даже в небольших количествах) передавать в усилитель не допускается! Параллельное включение двух конденсаторов 2,2 мкФ обеспечивает сигнал на уровне -3 дБ при частоте до 5 Гц и нагрузке 10 кОм. Это должно быть приемлемым для большинства усилителей

100 Ом резистор на выходе предназначен для предотвращения каких-либо колебаний ОУ при подключении к коаксиальному кабелю.

В качестве подходящего источника питания целесообразно использование внешнего трансформатора, чтобы исключить любую возможность наводок, особенно если используется фонокорректор.

Подходящий источник питания представлен в проекте 05 (см. Project 05). В этом случае используется трансформатор, обеспечивающий 16 В переменного напряжения, а выпрямление, фильтрация и стабилизация смонтированы в пределах шасси предусилителя.

Если же вы хотите включить трансформатор в шасси, используйте трансформатор тороидального типа (20 ВА более чем достаточно), чтобы снизить магнитные поля до минимума.

При подключения к электросети будьте внимательны и соблюдайте меры предосторожности, сетевое напряжение опасно для жизни! В этом случае используйте стандартный разъем питания типа IEC. Для подключения к источнику переменного напряжения 12 В рекомендую использовать разъемы XLR. Они значительно более надежны, чем трубчатые разъемы питания и никогда не выпадают. Соединения XLR описаны на странице проекта источника питания



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные