Под руководством разработаны стрела урал 1. Мифы США. Отсталость советской компьютерной техники. Новое время, новые реалии

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев - разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Сергей Алексеевич Лебедев - основоположник вычислительной техники в СССР

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева - создать электронно-цифровую счетную машину.

Первый компьютер СССР

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м 2 . В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто - Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

Всего в МЭСМ было использовано порядка 6 тысяч различных электронных ламп, устройству требовалась мощность в 25 кВт. Программирование происходило за счет ввода данных с перфолент или в результате набора кодов на штекерном коммутаторе. Вывод данных производился посредством электромеханического печатающего устройства или путем фотографирования.

Параметры МЭСМ:

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м 2 .

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м 2). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

«Малютка» ЭВМ М-2

Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь - 3 м 2 . Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

ЭВМ «Стрела»

«Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м 2 .

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства - Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров.

БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» - её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения - 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.

Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Большая электронная счетная машина (БЭСМ)

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м 2 .

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь - производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 - 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6.

За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей - до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование - до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования - адресный язык.

В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Виктор Михайлович Глушков

Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд - аналогичная (трехадресная на 32 операции).

«Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» - менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт - это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур».

«Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Московский государственный университет в это время проектирует собственный компьютер - «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров.

«Сетунь» - электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Сетунь»

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там - к информационным технологиям. Институт кибернетики АН УССР (до 1962 года - Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия.

Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году.

Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники - завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

А в 1968 году небольшой серией была выпущена полупроводниковая ЭВМ «Днепр 2». Эти компьютеры имели более массовое назначение и использовались для выполнения различных вычислительных, производственных и планово-экономических задач. Но серийное производство «Днепр 2» было вскоре приостановлено.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. - луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

Украинский компьютер «Промінь» («Луч»)

За «Лучом» в серийное производство поступили компьютеры «Промінь-М» и «Промінь-2»:

  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 - основные и промежуточные, 20 - константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций - МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования - «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти - 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое управление за сложными, разнесенными на большие расстояния объектами в режиме онлайн.

В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной - 1 млн операций в секунду при очень малых размерах (менее 2 м 3). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы.

В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи.

В 1970 году началось плановое строительство комплекса.

В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания.

МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие - ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» - более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде.

Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова.

«Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных - все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» - разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра - появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

История развития ЭВМ связана с именами выдающихся ученых, которые уверенно шли к своей цели - облегчить вычислительную с помощью машин.

История развития ЭВМ. Счетные машины

Блез Паскаль (1623-1662). В течение нескольких лет молодой ученый разработал более пятидесяти моделей счетных машин, стараясь помочь отцу считать налоги. В 1645 году создал «паскалину», которая выполняла сложение и вычитание.

Готфрид Вильгельм Лейбниц (1646-1716) предложил которую назвал арифмометром. Она выполняла все арифметические действия.

Чарльз Беббидж (1792-1872) - первая программно-управляемая машина была почти закончена и состояла из двух частей: вычисляющей и печатающей. Выдвинул перспективные идеи о памяти машины и процессоре. Помощница ученого Огаста Ада Лавлейс разработала первую в мире программу для

История развития ЭВМ. Новые идеи, новые изобретения.

ЭВМ второго поколения (60-65 годы ХХ века). Элементная база - полупроводниковые транзисторы. Объем памяти (на магнитных сердечках) возрос в 32 раза, скорость увеличилась в 10 раз. Уменьшились размер и масса машин, повысилась их надежность. Были разработаны новые языки важные программирования: Algol, FORTRAN, COBOL, которые сделали возможным дальнейшеесовершенствование программ. В этот период создается процессор ввода-вывода, начинается использование операционных систем.

ЭВМ третьего поколения ((1965-1970 годы) поменяла транзисторы на интегральные микросхемы. Значительно снижены габариты ЭВМ, их стоимость. Появилась возможность использовать несколько программ на одной машине. Активно развивается программирование.

ЭВМ четвертого поколения (1970-1984 гг.) Смена элементной базы - размещение на одном кристалле десятки тысяч элементов. Значительное расширение пользовательской аудитории.

Дальнейшая история развития ЭВМ и ИКТ связана с совершенствованием микропроцессоров, разработкой микрокомпьютеров, которыми могут владеть отдельные люди. Стив Возняк разработал первый массовый домашний компьютер, а затем - первый персональный компьютер.

выберите шаблон, позволяющий правильно объединить все файлы имя которых заканчивается буквосочетанием "фы" и имеющих расширение из двух символов,в одну

группу?
А)*фы*.??
Б) *фы.??
В)фык*.??
Г)фф*фы.*????

Документ объёмом 8 Мбайт можно передать с одного компьютера на другой

двумя способами:
А) сжать архиватором, передать архив по каналу связи, распаковать;
Б) передать по каналу связи без использования архиватора.
Какой способ быстрее и на сколько, если:
скорость передачи данных по каналу связи составляет 221 бит/с;
объём сжатого архиватором документа равен 50 % от исходного;
время, требуемое на сжатие документа, – 10 секунд, на распаковку –
3 секунды?
В ответе напишите букву А, если быстрее способ А, или Б, если быстрее
способ Б. Сразу после буквы напишите число, обозначающее, на сколько
секунд один способ быстрее другого.
Так, например, если способ Б быстрее способа А на 23 секунды, в ответе
нужно написать Б23.
Единицы измерения «секунд», «сек.», «с» к ответу добавлять не нужно.

Помогите решить на с++ или pascale срочно

Таймер - это часы, которые умеют подавать звуковой сигнал по прошествии некоторого периода времени. Напишите программу, которая определяет, когда должен быть подан звуковой сигнал.Входные данныеВ первой строке входного файла INPUT.TXT записано текущее время в формате ЧЧ:ММ:СС (с ведущими нулями). При этом оно удовлетворяет ограничениям: ЧЧ - от 00 до 23, ММ и СС - от 00 до 60.Во второй строке записан интервал времени, который должен быть измерен. Интервал записывается в формате Ч:М:С (где Ч, М и С - от 0 до 109, без ведущих нулей). Дополнительно если Ч=0 (или Ч=0 и М=0), то они могут быть опущены. Например, 100:60 на самом деле означает 100 минут 60 секунд, что то же самое, что 101:0 или 1:41:0. А 42 обозначает 42 секунды. 100:100:100 - 100 часов, 100 минут, 100 секунд, что то же самое, что 101:41:40.

ПОЖАЛУЙСТА! СРОЧНО!

У Толи есть доступ к сети Интернет по высокоскоростному одностороннему радиоканалу,обеспечивающему скорость получения информации 220 бит в секунду. У Миши нет скоростного доступа вИнтернет, но есть возможность получать информацию от Толи по низкоскоростному телефонному каналусо средней скоростью 213 бит в секунду. Миша договорился с Толей, что тот будет скачивать для негоданные объемом 10 Мбайт по высокоскоростному каналу и ретранслировать их Мише понизкоскоростному каналу. Компьютер Толи может начать ретрансляцию данных не раньше, чем им будутполучены первые 1024 Кбайт этих данных. Каков минимально возможный промежуток времени (всекундах) с момента начала скачивания Толей данных до полного их получения Мишей? В ответе укажитетолько число, слово «секунд» или букву «с» добавлять не нужно

2
Документ обьемом 10мбайт можно передать с одного компьютера на другой 2 способами а-сжать архиватором по каналу связи и распаковать
б-передать по каналу связи без использования архиватора
какой способ быстрее если
-средняя скорость передачи данных составляет 2^18бит в секунду
-объем сжатого архиватором документа равен 30% от исходного
-время требуемое на сжатие документа 7 секунд, на распаковку 1 секунда?
в ответе указать решение и на сколько их разница в секундах будет больше.

| 7 классы | Планирование уроков на учебный год (ФГОС) | Основные компоненты компьютера и их функции

Урок 10
Основные компоненты компьютера и их функции

2.1.1. Компьютер





Ключевые слова:

компьютер процессор память устройства ввода информации устройства вывода информации

Одним из важных объектов, изучаемых на уроках информатики, является компьютер, получивший своё название по основной функции - проведению вычислений (англ. computer - вычислитель).

Первый компьютер был создан в 1945 г. в США. Познакомиться с историей компьютеров вы можете, совершив виртуальное путешествие по музеям вычислительной техники. Так, много интересной информации о компьютерах можно узнать, посетив . Обратите внимание, что для обозначения компьютерной техники 1940-1970-х годов часто используется аббревиатура ЭВМ (электронная вычислительная машина).

Современный компьютер - универсальное электронное программно управляемое устройство для работы с информацией.

Универсальным устройством компьютер называется потому, что он может применяться для многих целей - обрабатывать, хранить и передавать самую разнообразную информацию, использоваться человеком в разных видах деятельности.

Современные компьютеры могут обрабатывать разные виды информации : числа, текст, изображения, звуки. Информация любого вида представляется в компьютере в виде двоичного кода - последовательностей нулей и единиц. Некоторые способы двоичного кодирования представлены на рис. 2.1.

Информацию, предназначенную для обработки на компьютере и представленную в виде двоичного кода, принято называть двоичными данными или просто данными. Одним из основных достоинств двоичных данных является то, что их копируют, хранят и передают с использованием одних и тех же универсальных методов, независимо от вида исходной информации.

Способы двоичного кодирования текстов, звуков (голоса, музыки), изображений (фотографий, иллюстраций), последовательностей изображений (кино и видео), а также трёхмерных объектов были придуманы в 80-х годах прошлого века. Позже мы рассмотрим способы двоичного кодирования числовой, текстовой, графической и звуковой информации более подробно. Теперь же главное - знать, что последовательностям 1 и 0 в компьютерном представлении соответствуют электрические сигналы - «включено» и «выключено». Компьютер называется электронным устройством , потому что он состоит из множества электронных компонентов, обрабатывающих эти сигналы.

Обработку данных компьютер проводит в соответствии с программой - последовательностью команд, которые необходимо выполнить над данными для решения поставленной задачи. Как и данные, программы представляются в компьютере в виде двоичного кода. Программно управляемым устройством компьютер называется потому, что его работа осуществляется под управлением установленных на нём программ. Это программный принцип работы компьютера .

Современные компьютеры бывают самыми разными: от мощных компьютерных систем, занимающих целые залы и обеспечивающих одновременную работу многих пользователей, до мини-компьютеров, помещающихся на ладони (рис. 2.2).

Сегодня самым распространённым видом компьютеров является персональный компьютер (ПК) - компьютер, предназначенный для работы одного человека.

Слово «компьютер» уже давно и плотно укоренилось в мозгах даже самых «темных» слоев населения. Что это такое, на сегодняшний день хотя бы в общих чертах представляют даже папуасы Новой Гвинеи, что уж говорить о жителях нашей необъятной родины. Однако словосочетания «российский процессор» или «советский компьютер», к сожалению, вызывают ряд специфических ассоциаций. Допотопные устройства, громоздкие, слабые, неудобные, да и вообще, отечественная техника - это всегда повод для сарказма и иронии. К сожалению, мало кто знает, что СССР в определенные моменты истории вычислительной техники был «впереди планеты всей». И еще меньше информации вы найдете о современных отечественных разработках в этой области.

«Нет пророка в своем отечестве»

Советский Союз называют страной, обладавшей одной из самых сильных научных школ в мире, не только «квасные» патриоты. Это объективный факт, основанный на глубоком анализе системы образования экспертами Британской ассоциации педагогов. Исторически в СССР особый упор делался на подготовку специалистов в области естественных наук, инженеров и математиков. В середине XX века в стране Советов существовало несколько школ разработки вычислительной техники, и недостатка квалифицированных кадров для них не наблюдалось. Десятки талантливых ученых и инженеров участвовали в создании различных систем электронных счетных машин.

Разработки велись сразу в нескольких направлениях, от вычислительной техники высокой производительности до внедрения новых способов хранения данных. Здесь можно отметить и работы выдающегося ученого В.М.Глушкова, впервые выдвинувшего идею создания глобальной информационной инфраструктуры, и проектирование узкоспециализированных ЭВМ Н.Я.Матюхиным и М.А.Карцевым, и создание нетрадиционных архитектур вычислительных машин, в том числе уникального компьютера «Сетунь» на основе троичной логики, разработанного под руководством Н.П.Бруснецова.

Сергея Алексеевича Лебедева (1902 - 1974 гг.) небезосновательно называют основоположником развития вычислительной техники в Советском Союзе - под его руководством были разработаны 15 типов ЭВМ, от простейших ламповых до суперкомпьютеров на интегральных схемах.

Заря новой эпохи

Первые образцы электронных вычислительных машин были созданы примерно в одно и то же время в США и Великобритании. Чуть позже ЭВМ появились и в СССР. Разумеется, советские ученые знали, что на Западе такая техника уже существует, но, как и любая другая информация, просачивавшаяся в Россию во времена холодной войны, эти данные были весьма скудными и невнятными. Основная часть информации поступала от разведчиков, однако у них в те времена приоритетной задачей был военный шпионаж и исследования в области ядерного оружия. ЭВМ их интересовали только потому, что они находились в ведении американского военно-промышленного комплекса и были строго засекречены. Поэтому разговоры о том, что советская вычислительная техника копировалась с западных образцов, - не более чем инсинуации. Да и о каких «образцах» может идти речь, если действующие модели компьютеров в то время занимали два-три этажа и доступ к ним имел лишь весьма ограниченный круг лиц? Максимум, который могли получить отечественные шпионы, - отрывочные сведения из технической документации и стенограммы с научных конференций.

В конце 40-х годов в СССР сформировались основные научные школы, создававшие ЭВМ первого и второго поколений, появились первые проекты и их практическое воплощение. Это Пензенский НИИ математических машин, под руководством Б.И.Рамеева, занимавшийся разработкой универсальной вычислительной техники общего назначения. Это школа И.С.Брука, под руководством которого создавались малые и управляющие ЭВМ. И, конечно, коллектив выдающегося ученого академика С.А.Лебедева, являющегося основоположником центральных вычислительных машин в нашей стране.

Именно под руководством Лебедева была создана универсальная электронная счетная машина - первая в Европе.

МЭСМ И БЭСМ

В СССР было известно о создании американцами в 1946 году машины ENIAC - первой в мире ЭВМ с электронными лампами в качестве элементной базы и автоматическим программным управлением. В конце 1948 года Лебедев начал работу над своей машиной. Через год была разработана архитектура (практически с нуля, без каких-либо заимствований), а также принципиальные схемы отдельных блоков. В 1950 году ЭВМ была в рекордные сроки смонтирована силами всего лишь 12 научных сотрудников и 15 техников.

Свое детище Лебедев назвал «Малая электронная счетная машина», или МЭСМ. «Ребеночек», состоявший из шести тысяч электронных ламп, занял целое крыло двухэтажного здания. По сути это был лишь первый пробный шар в создании советских ЭВМ, можно сказать макет (кстати, буква «М» в аббревиатуре «МЭСМ» первоначально и означала «макет»). Однако вычислительные мощности этой машины сразу оказались востребованными - к ней выстраивались целые очереди из математиков с различными задачами, для решения которых требовался быстродействующий вычислитель.

При создании МЭСМ были использованы все основополагающие принципы создания компьютеров, такие как наличие устройств ввода и вывода, кодирование и хранение программы в памяти, автоматическое выполнение вычислений на основе хранимой в памяти программы и т.д. Наконец, это была ЭВМ на основе использующейся и в настоящее время в вычислительной технике двоичной логики (ENIAC использовал десятичную систему).

Вслед за малой электронно-счетной машиной последовала и большая - БЭСМ-1. Разработка была завершена осенью 1952 года, после чего Лебедев стал действительным членом Академии наук СССР.

В новой машине был учтен опыт создания МЭСМ и применена улучшенная элементная база. Компьютер обладал быстродействием в 8-10 тысяч операций в секунду (против всего лишь 50 операций в секунду у МЭСМ), внешние запоминающие устройства были выполнены на основе магнитных лент и магнитных барабанов. Несколько позже ученые экспериментировали с накопителями на ртутных трубках, потенциалоскопах и ферритовых сердечниках.

Если в СССР о западных ЭВМ знали мало, то в Европе и США о советских компьютерах не знали практически ничего. Поэтому доклад Лебедева на научной конференции в Дармштадте стал настоящей сенсацией: оказалось, что собранная в Советском Союзе БЭСМ-1 является самым производительным компьютером в Европе и одним из самых мощных в мире.

Первые вычислительные машины в Союзе работали без продыху. Сверхбыстрые вычисления требовались математикам, конструкторам, ученым-термоядерщикам и многим-многим другим специалистам.

Результатом дальнейшей работы коллектива под руководством Лебедева стало развитие и усовершенствование БЭСМ-1. Был создан серийный образец суперкомпьютера М-20, выполнявший до 20 тысяч операций в секунду. Кроме того, специально для нужд военных, в том числе для Центра контроля космического пространства, было разработано несколько моделей ЭВМ с большей производительностью.

1958 год стал еще одной важной, хоть и малоизвестной вехой в развитии вычислительной техники. Под руководством В.С.Бурцева, ученика Лебедева, комплекс, состоявший из нескольких машин М-40 и М-50 (глубокая модернизации М-20), в том числе расположенных на мобильной платформе, был объединен между собой в беспроводную сеть, работавшую на расстояниях до 200 км. При этом официально считается, что первая в мире компьютерная сеть заработала только в 1965 году, когда были соединены компьютеры TX-2 Массачусетского технологического института и Q-32 корпорации SDC в Санта-Монике.

Второе поколение

К концу 50-х годов (с серьезным отставанием по времени от США) в СССР был налажен серийный выпуск транзисторов, ставших основой новой элементной базы ЭВМ взамен громоздких и ненадежных ламп. Первыми машинами на полупроводниках были БЭСМ-3М и БЭСМ-4. Правда, они почти полностью копировали архитектуру М-20, разница была лишь в использовании транзисторов вместо ламп.

Первой же полноценной машиной второго поколения стала БЭСМ-6. Эта машина обладала рекордным для того времени быстродействием - около миллиона операций в секунду. Многие принципы ее архитектуры и структурной организации стали настоящей революцией в вычислительной технике того периода и, по сути, были уже шагом в третье поколение ЭВМ.

В БЭСМ-6 было реализовано расслоение оперативной памяти на блоки, допускающие одновременную выборку информации, что позволило резко увеличить скорость обращений к системе памяти. Был впервые внедрен метод буферизации запросов, создан прообраз современной кэш-памяти, реализована эффективная система многозадачности и обращения к внешним устройствам и многие другие инновации, некоторые из которых применяются до сих пор. БЭСМ-6 оказалась настолько удачной, что серийно выпускалась в течение 20 лет и эффективно работала в различных государственных структурах и институтах.

Покорение Эльбруса

Следующим этапом стали работы по созданию супер-ЭВМ, семейство которых получило название «Эльбрус». Этот проект был начат еще Лебедевым, а после его смерти был возглавлен Бурцевым.

Первый многопроцессорный вычислительный комплекс «Эльбрус-1» был запущен в 1979 году. Он включал в себя 10 процессоров и обладал быстродействием порядка 15 миллионов операций в секунду. Эта машина на несколько лет опередила ведущие западные образцы ЭВМ. В «Эльбрус-1» была впервые в мире реализована так называемая симметричная многопроцессорная система с общей памятью, принцип которой используется по сей день в современных суперкомпьютерах.

«Эльбрусы» вообще внесли в теорию вычислительных машин ряд революционных новшеств. Это суперскалярность (обработка за один такт более одной инструкции), реализация защищенного программирования с аппаратными типами данных, конвейеризация (параллельная обработка нескольких инструкций) и др. Все эти возможности впервые появились в советских компьютерах. Еще одним основным отличием системы «Эльбрус» от ей подобных, выпускавшихся в Союзе ранее, является ориентация на языки программирования высокого уровня. Базовый язык («Автокод Эльбрус Эль-76») был создан В. М. Пентковским, который впоследствии стал главным архитектором процессоров Pentium.

Новое время, новые реалии

Из всего вышесказанного может сложиться впечатление, что история советской вычислительной техники - это череда побед и эпохальных достижений. Однако это не так. Инженеры, ученые и конструкторы, создававшие компьютеры в СССР, безусловно, были фатально недооценены как историей вообще, так и родным государством в частности. Основным заказчиком ЭВМ был военно-промышленный комплекс со своими специфическими задачами, и он дал жизнь множеству гениальных технических решений и поистине выдающимся образцам вычислительной техники. Но, к сожалению, зачастую это были узкоспециализированные машины, а требования, предъявляемые государством к компьютерам, носили декларативный характер.

Переход страны к новому времени и вовсе превратился в страшный кошмар для научно-исследовательских институтов и ученых. Работа коллективов, занимавшихся разработкой вычислительной техники, фактически остановилась на несколько лет. Многие ученые уехали за границу, где их таланты послужили развитию компьютерных технологий других стран.

По словам Кейта Диффендорфа, редактора бюллетеня Microprocessor Report, вместе с Пентковским в Intel переехал огромный опыт и совершенные технологии, разработанные в Советском Союзе, в том числе основополагающие принципы современных архитектур, такие как SMP (симметричная мультипроцессорная обработка), суперскалярная и EPIC (Explicitly Parallel Instruction Code - код с явным параллелизмом инструкций) архитектуры. На основе этих принципов в Союзе уже выпускались компьютеры, в то время как в США эти технологии только «витали в умах ученых».

Но история не терпит сослагательного наклонения, так что случилось так, как случилось, и сегодня мир пользуется не «Эльбрусами», а Pentium’ами.

Тем не менее, не все еще потеряно. В России по-прежнему ведутся разработки компьютерной техники. Информация о них отрывочна и противоречива. Так, немало уже копий сломано вокруг продолжающего свою историю «Эльбруса».

Взбудоражила общественность вышедшая в 1999 году статья все того же Кейта Диффендорфа «Русские идут» («The Russians Are Coming»), в которой он дал высокую оценку разработке российской компании МЦСТ (Московский центр SPARC-технологий), созданной на базе отделений Института точной механики и вычислительной техники имени С. А. Лебедева. Речь идет о микропроцессоре «Эльбрус-2000».

Основной отличительной чертой этого изделия является наиболее глубокое на сегодняшний день распараллеливание ресурсов для одновременно выполняющихся инструкций. В целом с этой разработкой есть множество неясностей и противоречий. Официальная версия гласит, что на реализацию проекта у МЦСТ не хватило средств. В то же время интригующие характеристики нереализованного процессора взбудоражили умы совета директоров компании Intel. Так, еще в 2002 году Борис Бабаян (руководитель группы разработчиков) в интервью ExtremeTech сообщил что «при технологических нормах 0,1 мкм процессор будет иметь тактовую частоту 3 ГГц и обеспечит производительность порядка 500 SPECint95 и 1200 SPECfp95». Согласитесь, в 2002 году тактовая частота в 3 ГГц не могла не привлечь внимания. Да и заявленные показатели производительности поражают воображение. Насколько эта информация верна - неизвестно, однако вскоре корпорация Intel заключила договор с компанией «Эльбрус МЦСТ» и объявила о зачислении их сотрудников в свой штат.

Однако история «Эльбруса» на этом не закончилась. 27 октября 2007 года появилась официальная информация о том, что российский микропроцессор «Эльбрус Е3М» прошел государственные испытания. Наиболее интригующая часть звучит следующим образом: «По архитектурно-логическим и программным решениям вычислительный комплекс «Эльбрус-3М1» находится на современном мировом уровне, а по ряду решений превосходит его». Заявлено, что по абсолютному быстродействию новый процессор ЕЗМ в среднем аналогичен Pentium 4 с частотой 2 ГГц. Что же касается архитектурного быстродействия, то новая разработка превосходит знаменитый Itanium в 2,5 раза, а Pentium 4 и Xeon - в 6,5 раз.

Какова будет дальнейшая судьба «Эльбруса», как обычно, покажет время.



В продолжение темы:
Windows

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес" Введение Сначала мы приведём...

Новые статьи
/
Популярные